skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning data-driven discretizations for partial differential equations
The numerical solution of partial differential equations (PDEs) is challenging because of the need to resolve spatiotemporal features over wide length- and timescales. Often, it is computationally intractable to resolve the finest features in the solution. The only recourse is to use approximate coarse-grained representations, which aim to accurately represent long-wavelength dynamics while properly accounting for unresolved small-scale physics. Deriving such coarse-grained equations is notoriously difficult and often ad hoc. Here we introduce data-driven discretization, a method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations. Our approach uses neural networks to estimate spatial derivatives, which are optimized end to end to best satisfy the equations on a low-resolution grid. The resulting numerical methods are remarkably accurate, allowing us to integrate in time a collection of nonlinear equations in 1 spatial dimension at resolutions 4× to 8× coarser than is possible with standard finite-difference methods.  more » « less
Award ID(s):
1715477
PAR ID:
10108709
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
31
ISSN:
0027-8424
Page Range / eLocation ID:
15344 to 15349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable- θ method , as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions. 
    more » « less
  2. null (Ed.)
    Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods could not resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found. 
    more » « less
  3. Abstract We study Bayesian data assimilation (filtering) for time-evolution Partial differential equations (PDEs), for which the underlying forward problem may be very unstable or ill-posed. Such PDEs, which include the Navier–Stokes equations of fluid dynamics, are characterized by a high sensitivity of solutions to perturbations of the initial data, a lack of rigorous global well-posedness results as well as possible non-convergence of numerical approximations. Under very mild and readily verifiable general hypotheses on the forward solution operator of such PDEs, we prove that the posterior measure expressing the solution of the Bayesian filtering problem is stable with respect to perturbations of the noisy measurements, and we provide quantitative estimates on the convergence of approximate Bayesian filtering distributions computed from numerical approximations. For the Navier–Stokes equations, our results imply uniform stability of the filtering problem even at arbitrarily small viscosity, when the underlying forward problem may become ill-posed, as well as the compactness of numerical approximants in a suitable metric on time-parametrized probability measures. 
    more » « less
  4. Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend the walk on spheres (WoS) algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired by null-scattering yields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. 
    more » « less
  5. Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ⁡ ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations. 
    more » « less