skip to main content


Title: External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states

Abstract. Changes in aerosol chemical mixtures modify cloud condensation nuclei (CCN)activity. Previous studies have developed CCN models and validated changesin external and internal mixing state with ambient field data. Here, wedevelop an experimental method to test and validate the CCN activation ofknown aerosol chemical composition with multicomponent mixtures and varyingmixing states. CCN activation curves consisting of one or more activationpoints are presented. Specifically, simplified two-component systems ofvarying hygroscopicity were generated under internal, external, andtransitional mixing conditions. κ-Köhler theory predictions werecalculated for different organic and inorganic mixtures and compared toexperimentally derived kappa values and respective mixing states. This workemploys novel experimental methods to provide information on the shifts inCCN activation data due to external to internal particle mixing fromcontrolled laboratory sources. Results show that activation curvesconsisting of single and double activation points are consistent withinternal and external mixtures, respectively. In addition, the height of theplateau at the activation points is reflective of the externally mixedconcentration in the mixture. The presence of a plateau indicates that CCNactivation curves consisting of multiple inflection points are externallymixed aerosols of varying water-uptake properties. The plateau disappearswhen mixing is promoted in the flow tube. At the end of the flow tubeexperiment, the aerosols are internally mixed and the CCN activated fractiondata can be fit with a single-sigmoid curve. The technique to mimicexternally to internally mixed aerosol is applied to non-hygroscopiccarbonaceous aerosol with organic and inorganic components. To ourknowledge, this work is the first to show controlled CCN activation of mixednon-hygroscopic soot with hygroscopic material as the aerosol populationtransitions from externally to internally mixed states in laboratoryconditions. Results confirm that CCN activation analysis methods used hereand in ambient data sets are robust and may be used to infer the mixingstate of complex aerosol compositions of unknown origin.

 
more » « less
Award ID(s):
1744216
NSF-PAR ID:
10108772
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
12
Issue:
8
ISSN:
1867-8548
Page Range / eLocation ID:
4277 to 4289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ambient aerosol particles can undergo dynamic mixing processes as they coagulate with particles from other air masses and emission sources. Therefore, aerosols exist in a spectrum, from externally mixed to internally mixed. The mixing state of aerosols can affect their ability to uptake water (hygroscopicity) and their cloud condensation nuclei (CCN) activity, modifying their contribution to the planet’s total radiative budget. However, current water-uptake measurement methods may not be able to capture the complex mixing state. In this research, the dynamic mixing process was simulated by the particle-resolved aerosol model PartMC and also created by experiments in a laminar flow mixing tube. The mixing evolution of ammonium sulfate and sucrose binary mixtures were observed along with the changes in their water uptake properties expressed as the single hygroscopicity parameter, κ. The use of a mixing simulation in conjunction with experiments allow for better identification of the particle mixing state and the particle water uptake and show that no one kappa value can capture the complexity of mixing across the mixed particle size distribution. In other words, the PartMC simulations can be used as a guiding tool to interpret a system’s mixing state based on its experimental droplet activation spectra. This work demonstrates the importance of the integration and use of mixing models to aid in mixing state determination and hygroscopicity measurements of mixed systems. 
    more » « less
  2. Nicole Riemer (Ed.)
    Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems. 
    more » « less
  3. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence of aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components. 
    more » « less
  4. Secondary organic aerosols contribute a large fraction to atmospheric aerosols. The phase states of secondary organic aerosols influence heterogeneous and multiphase chemistry in the atmosphere and thus climate. In previous studies we have used the dual tandem differential mobility analyzer technique to characterize the temperature- and humidity-dependent viscosity and glass transition temperature of suspended particles. However, the technique requires high particle number concentrations, is a complex setup, is expensive, and measurements are time consuming. Here we demonstrate a new simplified and more cost-effective method to obtain similar data. The technique was used to measure the temperature where the viscosity is ∼107 Pa s for submicron particles composed of binary and ternary mixtures of the sucrose/tartaric acid/citric acid system. Sucrose, tartaric acid and citric acid are taken as proxies for viscous organic aerosol components in the atmosphere. A subset of data were compared to measurements with the dual-tandem differential mobility analyzer method. Results show good agreement between the two techniques. The same mixed chemical systems were modeled using an updated version of the parametric phase diagram model described in Kasparoglu et al. (2021, https://doi.org/10.5194/acp-21-1127-2021) as well as the predictions with the viscosity module of the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients model (AIOMFAC-VISC). Results show that appropriately parameterized mixing rules are suitable to describe these mixtures. We anticipate that the new technique will accelerate discovery of aerosol phase transitions in aerosol research. 
    more » « less
  5. In this work, we studied the Cloud Condensation nuclei (CCN) activity and subsaturated droplet growth of Phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler Theory can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water insoluble species, the supersaturated and subsaturated hygroscopicity derived from (KT) principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel-Halsey-Hill (FHH)-Adsorption Theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA-IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single-hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM based hygroscopicity parameter based can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility. 
    more » « less