This paper presents a modeling method to accurately predict DC and ripple values of flying capacitor voltages and inductor currents in hybrid converters by recognizing a key relationship between median and average values of these state variables. The method is demonstrated for the Dual-Phase Multi-Inductor Hybrid (DP-MIH) converter and 3-Level Buck converter. Analytical details and intuitive explanations are presented for the well-known balancing problem of flying capacitor voltages and inductor current fluctuations in hybrid converters. Simulation results for the converters at different operating conditions are provided to verify the method and analytical results.
more »
« less
Natural Balancing of Flying Capacitor Multilevel Converters at Nominal Conversion Ratios
This work explores the mechanisms and limitations of natural voltage balancing in flying capacitor multilevel (FCML) DC-DC converters. A simple discrete-time state space model is used to explore the fundamental conditions that will lead to (or prevent) natural balance of flying capacitor voltages, along with the balancing dynamics. The treatment is used to highlight straightforward ways to alleviate problems with natural imbalance by adjusting the switching scheme. The model is compared against circuit simulations and the proposed switching scheme is verified in a hardware prototype.
more »
« less
- Award ID(s):
- 1711077
- PAR ID:
- 10108914
- Date Published:
- Journal Name:
- 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is widely recognized that the number of switching turn-on/off actions is proportional to the switching loss. However, Y-Matrix Modulated (YMM) based Modular Multi-level Converter (MMC) has a significantly larger number of switching actions in each fundamental cycle compared to phase shift and level shift modulation methods in order to achieve self-voltage balancing. Given the large amount of switching patterns provided by high level MMCs, the analytical methods make it hard to find the optimal switching scheme. In this paper, a general approach for finding the N-level switched capacitor MMC (SC-MMC) optimal switching scheme using Genetic Algorithm (GA) is proposed. The main objective is to propose a heuristic method to minimize the switching actions with self voltage balancing for SC-MMC. Case studies have been implemented on four-level, eleven-level, and fifty-level SC-MMCs. The optimal solution has also been evaluated in terms of the computational complexity, capacitor voltage ripple, and total harmonic distortion (THD) to validate the effectiveness of the proposed method. The simulation results demonstrate the computational efficiency of the proposed algorithm in comparison to the analytical method. Moreover, the proposed algorithm can achieve a substantial 22% reduction in switching actions compared to the original switching pattern.more » « less
-
This paper compares three different dc-dc topologies, i.e. boost converter, three-level flying capacitor multilevel converter (FCMC) and one-cell switching tank converter (STC) for a 100 kW electric vehicle power electronic system. This bidirectional dc-dc converter targets 300 V - 600 V voltage conversion. Total semiconductor loss index (TSLI) has been proposed to evaluate topologies and device technologies. The boost converter and one-cell STC have been fairly compared by utilizing this index. The simulation results of a 100 kW one-cell STC working at zero current switching (ZCS) mode have been provided. A 100 kW hardware prototype using 1200 V 600 A SiC power module has been built. The estimated efficiency is about 99.2% at 30 kW, 99.13% at half load, and 98.64% at full load. The power density of the main circuits is about 42 kW/Lmore » « less
-
This paper proposes a generalized Gallium Nitride (GaN) based modular multiport multilevel flying capacitor architecture. In other words, the attractive flying capacitor multilevel (FCML) design and the full-bridge unfolding circuit are employed to develop a multiport multilevel converter architecture that fits various applications. Each module can be designed to contain any combination of AC and DC ports connected through DC-to-DC and DC-to-AC power conversion paths. These conversion paths are FCML topologies that can be designed with any number of levels; the DC-to-AC paths incorporate the full-bridge unfolding circuit. Two example prototypes with open-loop control, three-port and four-port, have verified this generalized architecture. A single module 3 kW three-port four-level prototype with two DC ports and an AC port has achieved a compact size of 11.6 in 3 (4.8 in ×4.3 in × 0.56 in) and a high power density of 258.6 W/in 3 . The three ports are connected through DC-to-AC and DC-to-DC paths that have achieved peak efficiencies of 98.2% and 99.43%, respectively. The total harmonic distortion (THD) of the AC port's voltage and current are 1.26% and 1.23%, respectively. It operates at a high switching frequency of 120 kHz because of the GaN switches and has an actual frequency (inductor's ripple frequency) of 360 kHz thanks to the frequency multiplication effect of the FCML. The four-port prototype contains three DC ports and an AC port and achieved similar high figures of merit. These experimental results of the two prototypes of high efficiency, power density, and compact size are presented in this article and highlight this architecture's promising potential. The choice of the number of modules, ports, and levels depends on the application and its specification; therefore, this proposed generalized structure may serve as a reference design approach for various applications of interest.more » « less
-
This article investigates the modeling, analysis, and design methods for passively balancing flying capacitor multilevel (FCML) converters using coupled inductors. Coupled inductors synergize with FCML converters by reducing inductor current ripple, reducing switch stress, and, as proven in this article, by providing flying capacitor voltage balancing. This enables FCML topologies to be scaled well to larger systems. This article proves that coupled inductors can solve the unbalancing problem in many FCML converters. Moreover, tools are developed to thoroughly explain and quantify coupled inductor balancing, allowing general design guidelines to be offered for robust coupled inductor FCML converters. Finally, this article derives the limitations of coupled inductor balancing with respect to the number of phases, levels, and the required coupling ratio. The key principles of coupled inductor FCML balancing in steady state are demonstrated with a systematic theoretical framework and extensive experimental and simulation results.more » « less
An official website of the United States government

