skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating Formal Schedulability Analysis into a Verified OS Kernel
Formal verification of real-time systems is attractive because these systems often perform critical operations. Unlike non real-time systems, latency and response time guarantees are of critical importance in this setting, as much as functional correctness. Nevertheless, formal verification of real-time OSes usually stops the scheduling analysis at the policy level: they only prove that the scheduler (or its abstract model) satisfies some scheduling policy. In this paper, we go further and connect together Prosa, a verified schedulability analyzer, and RT-CertiKOS, a verified single-core sequential real-time OS kernel. Thus, we get a more general and extensible schedulability analysis proof for RT-CertiKOS, as well a concrete implementation validating Prosa models. It also showcases that it is realistic to connect two completely independent formal developments in a proof assistant.  more » « less
Award ID(s):
1715154 1763399 1521523
PAR ID:
10109069
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
31st International Conference on Computer Aided Verification (CAV)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present RT-Gang: a novel realtime gang scheduling framework that enforces a one-gang-at-atime policy. We find that, in a multicore platform, co-scheduling multiple parallel real-time tasks would require highly pessimistic worst-case execution time (WCET) and schedulability analysis—even when there are enough cores—due to contention in shared hardware resources such as cache and DRAM controller. In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler globally enforces the one-gangat-a-time scheduling policy to guarantee tight and accurate task WCET. To minimize under-utilization, we integrate a state-of-the-art memory bandwidth throttling framework to allow safe execution of best-effort tasks. Specifically, any idle cores, if exist, are used to schedule best-effort tasks but their maximum memory bandwidth usages are strictly throttled to tightly bound interference to real-time gang tasks. We implement RT-Gang in the Linux kernel and evaluate it on two representative embedded multicore platforms using both synthetic and real-world DNN workloads. The results show that RT-Gang dramatically improves system predictability and the overhead is negligible. 
    more » « less
  2. null (Ed.)
    Intermittently-powered devices have gained much interest in recent years. However, scheduling real-time tasks while supporting data consistency, timekeeping, and schedulability guarantees on these devices still remains a challenge. Many sensing tasks need long indivisible sensor reading operations, but most prior work has limited their focus to the forward progress of computation-only tasks. In this paper, we propose a scheduling framework to execute real-time periodic tasks with atomic sensing operations. Our proposed method keeps track of time progress and ensures the periodic execution of sensing tasks while efficiently utilizing intermittent power sources. We provide schedulability analysis to determine if a taskset is schedulable under a given charging condition. As a proof-of-concept, we design a custom programmable RFID tag device, called R’tag, and demonstrate the effectiveness of our framework in a realistic sensing application. Evaluation results show that the proposed method satisfies the real-time task execution requirements on IPDs in terms of task scheduling, timekeeping, and periodic sensing while significantly outperforming prior work. 
    more » « less
  3. Pellizzoni, Rodolfo (Ed.)
    Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms. 
    more » « less
  4. Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq. 
    more » « less
  5. Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq. 
    more » « less