skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Analysis of Emotion-Detecting AI Systems with Respect to Algorithm Performance and Dataset Diversity
In recent news, organizations have been considering the use of facial and emotion recognition for applications involving youth such as tackling surveillance and security in schools. However, the majority of efforts on facial emotion recognition research have focused on adults. Children, particularly in their early years, have been shown to express emotions quite differently than adults. Thus, before such algorithms are deployed in environments that impact the wellbeing and circumstance of youth, a careful examination should be made on their accuracy with respect to appropriateness for this target demographic. In this work, we utilize several datasets that contain facial expressions of children linked to their emotional state to evaluate eight different commercial emotion classification systems. We compare the ground truth labels provided by the respective datasets to the labels given with the highest confidence by the classification systems and assess the results in terms of matching score (TPR), positive predictive value, and failure to compute rate. Overall results show that the emotion recognition systems displayed subpar performance on the datasets of children's expressions compared to prior work with adult datasets and initial human ratings. We then identify limitations associated with automated recognition of emotions in children and provide suggestions on directions with enhancing recognition accuracy through data diversification, dataset accountability, and algorithmic regulation.  more » « less
Award ID(s):
1849101
PAR ID:
10109151
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society
Page Range / eLocation ID:
377 to 382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Facial expressions are critical for conveying emotions and facilitating social interaction. Yet, little is known about how accurately sighted individuals recognize emotions facially expressed by people with visual impairments in online communication settings. OBJECTIVE This study aimed to investigate sighted individuals’ ability to understand facial expressions of six basic emotions in people with visual impairments during Zoom calls. It also aimed to examine whether education on facial expressions specific to people with visual impairments would improve emotion recognition accuracy. METHODS Sighted participants viewed video clips of individuals with visual impairments displaying facial expressions. They then identified the emotions displayed. Next, they received an educational session on facial expressions specific to people with visual impairments, addressing unique characteristics and potential misinterpretations. After education, participants viewed another set of video clips and again identified the emotions displayed. RESULTS Before education, participants frequently misidentified emotions. After education, their accuracy in recognizing emotions improved significantly. CONCLUSIONS This study provides evidence that education on facial expressions of people with visual impairments can significantly enhance sighted individuals’ ability to accurately recognize emotions in online settings. This improved accuracy has the potential to foster more inclusive and effective online interactions between people with and without visual disabilities. 
    more » « less
  2. People can visualize their spontaneous and voluntary emotions via facial expressions, which play a critical role in social interactions. However, less is known about mechanisms of spontaneous emotion expressions, especially in adults with visual impairment and blindness. Nineteen adults with visual impairment and blindness participated in interviews where the spontaneous facial expressions were observed and analyzed via the Facial Action Coding System (FACS). We found a set of Action Units, primarily engaged in expressing the spontaneous emotions, which were likely to be affected by participants’ different characteristics. The results of this study could serve as evidence to suggest that adults with visual impairment and blindness show individual differences in spontaneous facial expressions of emotions. 
    more » « less
  3. The incorporation of technology into primary and secondary education has facilitated the creation of curricula that utilize computational tools for problem-solving. In Open-Ended Learning Environments (OELEs), students participate in learning-by- modeling activities that enhance their understanding of (Science, technology, engineering, and mathematics) STEM and computational concepts. This research presents an innovative multimodal emotion recognition approach that analyzes facial expressions and speech data to identify pertinent learning-centered emotions, such as engagement, delight, confusion, frustration, and boredom. Utilizing sophisticated machine learning algorithms, including High-Speed Face Emotion Recognition (HSEmotion) model for visual data and wav2vec 2.0 for auditory data, our method is refined with a modality verification step and a fusion layer for accurate emotion classification. The multimodal technique significantly increases emotion detection accuracy, with an overall accuracy of 87%, and an Fl -score of 84%. The study also correlates these emotions with model building strategies in collaborative settings, with statistical analyses indicating distinct emotional patterns associated with effective and ineffective strategy use for tasks model construction and debugging tasks. These findings underscore the role of adaptive learning environments in fostering students' emotional and cognitive development. 
    more » « less
  4. We present a System for Processing In-situ Bio-signal Data for Emotion Recognition and Sensing (SPIDERS)- a low-cost, wireless, glasses-based platform for continuous in-situ monitoring of user's facial expressions (apparent emotions) and real emotions. We present algorithms to provide four core functions (eye shape and eyebrow movements, pupillometry, zygomaticus muscle movements, and head movements), using the bio-signals acquired from three non-contact sensors (IR camera, proximity sensor, IMU). SPIDERS distinguishes between different classes of apparent and real emotion states based on the aforementioned four bio-signals. We prototype advanced functionalities including facial expression detection and real emotion classification with a landmarks and optical flow based facial expression detector that leverages changes in a user's eyebrows and eye shapes to achieve up to 83.87% accuracy, as well as a pupillometry-based real emotion classifier with higher accuracy than other low-cost wearable platforms that use sensors requiring skin contact. SPIDERS costs less than $20 to assemble and can continuously run for up to 9 hours before recharging. We demonstrate that SPIDERS is a truly wireless and portable platform that has the capability to impact a wide range of applications, where knowledge of the user's emotional state is critical. 
    more » « less
  5. Many people including those with visual impairment and blindness take advantage of video conferencing tools to meet people. Video conferencing tools enable them to share facial expressions that are considered as one of the most important aspects of human communication. This study aims to advance knowledge of how those with visual impairment and blindness share their facial expressions of emotions virtually. This study invited a convenience sample of 28 adults with visual impairment and blindness to Zoom video conferencing. The participants were instructed to pose facial expressions of basic human emotions (anger, fear, disgust, happiness, surprise, neutrality, calmness, and sadness), which were video recorded. The facial expressions were analyzed using the Facial Action Coding System (FACS) that encodes the movement of specific facial muscles called Action Units (AUs). This study found that there was a particular set of AUs significantly engaged in expressing each emotion, except for sadness. Individual differences were also found in AUs influenced by the participants’ visual acuity levels and emotional characteristics such as valence and arousal levels. The research findings are anticipated to serve as the foundation of knowledge, contributing to developing emotion-sensing technologies for those with visual impairment and blindness. 
    more » « less