skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Recognizing facially expressed emotions in videos of people with visual impairments in online settings
BACKGROUND Facial expressions are critical for conveying emotions and facilitating social interaction. Yet, little is known about how accurately sighted individuals recognize emotions facially expressed by people with visual impairments in online communication settings. OBJECTIVE This study aimed to investigate sighted individuals’ ability to understand facial expressions of six basic emotions in people with visual impairments during Zoom calls. It also aimed to examine whether education on facial expressions specific to people with visual impairments would improve emotion recognition accuracy. METHODS Sighted participants viewed video clips of individuals with visual impairments displaying facial expressions. They then identified the emotions displayed. Next, they received an educational session on facial expressions specific to people with visual impairments, addressing unique characteristics and potential misinterpretations. After education, participants viewed another set of video clips and again identified the emotions displayed. RESULTS Before education, participants frequently misidentified emotions. After education, their accuracy in recognizing emotions improved significantly. CONCLUSIONS This study provides evidence that education on facial expressions of people with visual impairments can significantly enhance sighted individuals’ ability to accurately recognize emotions in online settings. This improved accuracy has the potential to foster more inclusive and effective online interactions between people with and without visual disabilities.  more » « less
Award ID(s):
1831969
PAR ID:
10644262
Author(s) / Creator(s):
 
Publisher / Repository:
IOS Press
Date Published:
Journal Name:
Technology and Disability
Volume:
36
Issue:
4
ISSN:
1055-4181
Page Range / eLocation ID:
199 to 208
Subject(s) / Keyword(s):
Cyberspace, non-verbal communication, visual disabilities, emotion recognition, facial expression
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given that most cues exchanged during a social interaction are nonverbal (e.g., facial expressions, hand gestures, body language), individuals who are blind are at a social disadvantage compared to their sighted peers. Very little work has explored sensory augmentation in the context of social assistive aids for individuals who are blind. The purpose of this study is to explore the following questions related to visual-to-vibrotactile mapping of facial action units (the building blocks of facial expressions): (1) How well can individuals who are blind recognize tactile facial action units compared to those who are sighted? (2) How well can individuals who are blind recognize emotions from tactile facial action units compared to those who are sighted? These questions are explored in a preliminary pilot test using absolute identification tasks in which participants learn and recognize vibrotactile stimulations presented through the Haptic Chair, a custom vibrotactile display embedded on the back of a chair. Study results show that individuals who are blind are able to recognize tactile facial action units as well as those who are sighted. These results hint at the potential for tactile facial action units to augment and expand access to social interactions for individuals who are blind. 
    more » « less
  2. Many people including those with visual impairment and blindness take advantage of video conferencing tools to meet people. Video conferencing tools enable them to share facial expressions that are considered as one of the most important aspects of human communication. This study aims to advance knowledge of how those with visual impairment and blindness share their facial expressions of emotions virtually. This study invited a convenience sample of 28 adults with visual impairment and blindness to Zoom video conferencing. The participants were instructed to pose facial expressions of basic human emotions (anger, fear, disgust, happiness, surprise, neutrality, calmness, and sadness), which were video recorded. The facial expressions were analyzed using the Facial Action Coding System (FACS) that encodes the movement of specific facial muscles called Action Units (AUs). This study found that there was a particular set of AUs significantly engaged in expressing each emotion, except for sadness. Individual differences were also found in AUs influenced by the participants’ visual acuity levels and emotional characteristics such as valence and arousal levels. The research findings are anticipated to serve as the foundation of knowledge, contributing to developing emotion-sensing technologies for those with visual impairment and blindness. 
    more » « less
  3. The paper reports ongoing research toward the design of multimodal affective pedagogical agents that are effective for different types of learners and applications. In particular, the work reported in the paper investigated the extent to which the type of character design (realistic versus stylized) affects students’ perception of an animated agent’s facial emotions, and whether the effects are moderated by learner characteristics (e.g. gender). Eighty-two participants viewed 10 animation clips featuring a stylized character exhibiting 5 different emotions, e.g. happiness, sadness, fear, surprise and anger (2 clips per emotion), and 10 clips featuring a realistic character portraying the same emotional states. The participants were asked to name the emotions and rate their sincerity, intensity, and typicality. The results indicated that for recognition, participants were slightly more likely to recognize the emotions displayed by the stylized agent, although the difference was not statistically significant. The stylized agent was on average rated significantly higher for facial emotion intensity, whereas the differences in ratings for typicality and sincerity across all emotions were not statistically significant. A significant difference in ratings was shown in regard to sadness (within typicality), happiness (within sincerity), fear, anger, sadness and happiness (within intensity) with the stylized agent rated higher. Gender was not a significant correlate across all emotions or for individual emotions. 
    more » « less
  4. In general, people tend to identify the emotions of others from their facial expressions, however recent findings suggest that we may be more accurate when we hear someone’s voice than when we look only at their facial expression. The study reported in the paper examined whether these findings hold true for animated agents. A total of 37 subjects participated in the study: 19 males, 14 females, and 4 of non-specified gender. Subjects were asked to view 18 video stimuli; 9 clips featured a male agent and 9 clips a female agent. Each agent showed 3 different facial expressions (happy, angry, neutral), each one paired with 3 different voice lines spoken in three different tones (happy, angry, neutral). Hence, in some clips the agent’s tone of voice and facial expression were congruent, while in some videos they were not. Subjects answered questions regarding the emotion they believed the agent was feeling and rated the emotion intensity, typicality, and sincerity. Findings showed that emotion recognition rate and ratings of emotion intensity, typicality and sincerity were highest when the agent’s face and voice were congruent. However, when the channels were incongruent, subjects identified the emotion more accurately from the agent’s facial expression than the tone of voice. 
    more » « less
  5. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/ 
    more » « less