skip to main content


Title: Center-of-Gravity-Based Approach for Modeling Dynamics of Multisection Continuum Arms
Multisection continuum arms offer complementary characteristics to those of traditional rigid-bodied robots. Inspired by biological appendages, such as elephant trunks and octopus arms, these robots trade rigidity for compliance and accuracy for safety and, therefore, exhibit strong potential for applications in human-occupied spaces. Prior work has demonstrated their superiority in operation in congested spaces and manipulation of irregularly shaped objects. However, they are yet to be widely applied outside laboratory spaces. One key reason is that, due to compliance, they are difficult to control. Sophisticated and numerically efficient dynamic models are a necessity to implement dynamic control. In this paper, we propose a novel numerically stable center-of-gravity-based dynamic model for variable-length multisection continuum arms. The model can accommodate continuum robots having any number of sections with varying physical dimensions. The dynamic algorithm is of O(n2) complexity, runs at 9.5 kHz, simulates six to eight times faster than real time for a three-section continuum robot, and, therefore, is ideally suited for real-time control implementations. The model accuracy is validated numerically against an integral-dynamic model proposed by the authors and experimentally for a three-section pneumatically actuated variable-length multisection continuum arm. This is the first sub-real-time dynamic model based on a smooth continuous deformation model for variable-length multisection continuum arms.  more » « less
Award ID(s):
1718755 1718075
NSF-PAR ID:
10109165
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Robotics
ISSN:
1552-3098
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuum robots suffer large deflections due to internal and external forces. Accurate modeling of their passive compliance is necessary for accurate environmental interaction, especially in scenarios where direct force sensing is not practical. This paper focuses on deriving analytic formulations for the compliance of continuum robots that can be modeled as Kirchhoff rods. Compared to prior works, the approach presented herein is not subject to the constant-curvature assumptions to derive the configuration space compliance, and we do not rely on computationally-expensive finite difference approximations to obtain the task space compliance. Using modal approximations over curvature space and Lie group integration, we obtain closed-form expressions for the task and configuration space compliance matrices of continuum robots, thereby bridging the gap between constant-curvature analytic formulations of configuration space compliance and variable curvature task space compliance. We first present an analytic expression for the compliance of aingle Kirchhoff rod.We then extend this formulation for computing both the task space and configuration space compliance of a tendon-actuated continuum robot. We then use our formulation to study the tradeoffs between computation cost and modeling accuracy as well as the loss in accuracy from neglecting the Jacobian derivative term in the compliance model. Finally, we experimentally validate the model on a tendon-actuated continuum segment, demonstrating the model’s ability to predict passive deflections with error below 11.5% percent of total arc length. 
    more » « less
  2. null (Ed.)
    In this paper, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees-of-freedom are directly mapped to those of a continuum robot section. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Experimental results show that the proposed method managed simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (steady state arc length and curvature tracking error of merely 3.3mm and 0.13m-1, respectively). These results demonstrate that the proposed method can be applied to multi-section continuum manipulator and perform complex maneuvers within a nonlinear setting. 
    more » « less
  3. Soft Continuum arms, such as trunk and tentacle robots, can be considered as the “dual” of traditional rigid-bodied robots in terms of manipulability, degrees of freedom, and compliance. Introduced two decades ago, continuum arms have not yet realized their full potential, and largely remain as laboratory curiosities. The reasons for this lag rest upon their inherent physical features such as high compliance which contribute to their complex control problems that no research has yet managed to surmount. Recently, reservoir computing has been suggested as a way to employ the body dynamics as a computational resource toward implementing compliant body control. In this paper, as a first step, we investigate the information processing capability of soft continuum arms. We apply input signals of varying amplitude and bandwidth to a soft continuum arm and generate the dynamic response for a large number of trials. These data is aggregated and used to train the readout weights to implement a reservoir computing scheme. Results demonstrate that the information processing capability varies across input signal bandwidth and amplitude. These preliminary results demonstrate that soft continuum arms have optimal bandwidth and amplitude where one can implement reservoir computing. 
    more » « less
  4. Tendon actuated multisection continuum arms have high potential for inspection applications in highly constrained spaces. They generate motion by axial and bending deformations. However, because of the high mechanical coupling between continuum sections, variable length-based kinematic models produce poor results. A new mechanics model for tendon actuated multisection continuum arms is proposed in this paper. The model combines the continuum arm curve parameter kinematics and concentric tube kinematics to correctly account for the large axial and bending deformations observed in the robot. Also, the model is computationally efficient and utilizes tendon tensions as the joint space variables thus eliminating the actuator length related problems such as slack and backlash. A recursive generalization of the model is also presented. Despite the high coupling between continuum sections, numerical results show that the model can be used for generating correct forward and inverse kinematic results. The model is then tested on a thin and long multisection continuum arm. The results show that the model can be used to successfully model the deformation. 
    more » « less
  5. null (Ed.)
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the ever-growing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed. 
    more » « less