skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function
Water shortages caused by droughts lead to crop losses that affect billions of people around the world each year. By discovering how wild plants adapt to drought, it may be possible to identify traits and genes that help to improve the growth of crop plants when water is scarce. It has been suggested that plants have adapted to droughts by flowering at times of the year when droughts are less likely to occur. For example, if droughts are more likely to happen in spring, the plants may delay flowering until the summer. Arabidopsis thaliana is a small plant that is found across Eurasia, Africa and North America, including in areas that are prone to drought at different times of the year. Individual plants of the same species may carry different versions of the same gene (known as alleles). Some of these alleles may not work properly and are referred to as loss-of-function alleles. Monroe et al. investigated whether A. thaliana plants carry any loss-of-function alleles that are associated with droughts happening in the spring or summer, and whether they are linked to when those plants will flower. Monroe et al. analyzed satellite images collected over the last 30 years to measure when droughts have occurred. Next, they searched genome sequences of Arabidopsis thaliana for alleles that might help the plants to adapt to droughts in the spring or summer. Combining the two approaches revealed that loss-of-function alleles associated with spring droughts were strongly predicted to be associated with the plants flowering later in the year. Similarly, loss-of-function alleles associated with summer droughts were predicted to be associated with the plants flowering earlier in the year. These findings support the idea that plants can adapt to drought by changing when they produce flowers, and suggest that loss-of-function alleles play a major role in this process. New techniques for editing genes mean it is easier than ever to generate new loss-of-function alleles in specific genes. Therefore, the results presented by Monroe et al. may help researchers to develop new varieties of crop plants that are better adapted to droughts.  more » « less
Award ID(s):
1701918
PAR ID:
10109214
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
7
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Köhler, C (Ed.)
    Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon. 
    more » « less
  2. Abstract

    Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter‐annualArabidopsis thalianapopulations from a wide climactic gradient in Norway. We used a variable reduction strategy to assess which of 100 climate descriptors from their home sites correlated most to their flowering behaviours when tested for responsiveness to photoperiod after saturation of vernalization; then, assessed sequence variation of 19 known environmental‐response flowering genes. Photoperiod responsiveness inversely correlated with interannual variation in timing of growing season onset. Time to flowering appeared driven by growing season length, curtailed by cold fall temperatures. The distribution ofFLM, TFL2 andHOS1haplotypes, genes involved in ambient temperature response, correlated with growing‐season climate. We show that long‐day responsiveness and late flowering may be driven not by risk of spring frosts, but by growing season temperature and length, perhaps to opportunistically maximize growth.

     
    more » « less
  3. Abstract

    Flowering time and water‐use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time,WUE, andWUEplasticity to drought inArabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) IsWUEplasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions ofA. thalianagrown in well‐watered and season‐ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment.WUEand flowering time were consistently positively genetically correlated.WUEwas correlated withWUEplasticity, but the direction changed between treatments. Selection generally favored early flowering and lowWUE, with drought favoring earlier flowering significantly more than well‐watered conditions. Selection for lowerWUEwas marginally stronger under drought. There were no net fitness costs ofWUEplasticity.WUEplasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation betweenWUEand flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions ofA. thaliana.WUEplasticity may be favored over completely fixed development in environments with periodic drought.

     
    more » « less
  4. Premise of the Study

    New growth in the spring requires resource mobilization in the vascular system at a time when xylem and phloem function are often reduced in seasonally cold climates. As a result, the timing of leaf out and/or flowering could depend on when the vascular system resumes normal function in the spring. This study investigated whether flowering time is influenced by vascular phenology in plants that flower precociously before they have leaves.

    Methods

    Flower, leaf, and vascular phenology were monitored in pairs of precocious and non‐precocious congeners. Differences in resource allocation were quantified by measuring bud dry mass and water content throughout the year, floral hydration was modelled, and a girdling treatment completed on branches in the field.

    Key Results

    Precocious flowering species invested more in floral buds the year before flowering than did their non‐precocious congeners, thus mobilizing less water in the spring, which allowed flowering before new vessel maturation.

    Conclusions

    A shift in the timing of resource allocation in precocious flowering plants allowed them to flower before the production of mature vessels and minimized the significance of seasonal changes in vascular function to their flowering phenology. The low investment required to complete floral development in the spring when the plant vascular system is often compromised could explain why flowers can emerge before leaf out.

     
    more » « less
  5. null (Ed.)
    Like animals, plants have internal biological clocks that allow them to adapt to daily and yearly changes, such as day-night cycles or seasons turning. Unlike animals, however, plants cannot move when their environment becomes different, so they need to be able to weather these changes by adjusting which genes they switch on and off. To do this, plants keep track of how long days are using external cues such as light or temperature. One of the effects of climate change is that these cues become less reliable, making it harder for plants to adapt to their environment and survive. This is a potential problem for crop species, like Brassica rapa . This plant has many edible forms, including Chinese cabbage, oilseed, pak choi, and turnip. It is also a close relative of the well-studied model plant, Arabidopsis . Since evolving away from Arabidopsis , the genome of B. rapa tripled, meaning it has one, two, or three copies of each gene. This has allowed the extra gene copies to mutate and adapt to different purposes. The question is, what impact has this genome expansion had on the plant's biological clock? One way to find out is to perform RNA-sequencing experiments, which record the genes a plant is using at any one time. Here, Greenham, Sartor et al. report the results of a series of RNA-sequencing experiments performed every two hours across two days. Plants were first exposed to light-dark or temperature cycles and then samples were taken when the plants were in constant light and temperature. This revealed which genes B. rapa turned on and off in response to signals from the internal biological clock. It turns out that the biological clock of B. rapa controls close to three quarters of its genes. These genes showed distinct phases, increasing or decreasing in regular patterns. But the different copies of duplicated and triplicated genes did not necessarily all behave in the same way. Many of the copies had different rhythms, and some increased and decreased in patterns totally opposite to their counterparts. Not only did the daily patterns differ, but responses to stressors like drought were also altered. Comparing these patterns to the patterns seen in Arabidopsis revealed that often, one B. rapa gene behaved just like its Arabidopsis equivalent, while its copies had evolved new behaviors. The different behaviors of the copies of each gene in B. rapa relative to its biological clock allow this plant to grow in different environments with varying temperatures and day lengths. Understanding how these adaptations work opens new avenues of research into how plants detect and respond to environmental signals. This could help to guide future work into targeting genes to improve crop growth and stress resilience. 
    more » « less