skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Turning Cliques into Paths to Achieve Planarity
Motivated by hybrid graph representations, we introduce and study the following beyond-planarity problem, which we call ℎ-Clique2Path Planarity: Given a graph G, whose vertices are partitioned into subsets of size at most h, each inducing a clique, remove edges from each clique so that the subgraph induced by each subset is a path, in such a way that the resulting subgraph of G is planar. We study this problem when G is a simple topological graph, and establish its complexity in relation to k-planarity. We prove that ℎ-Clique2Path Planarity is NP-complete even when ℎ=4 and G is a simple 3-plane graph, while it can be solved in linear time, for any h, when G is 1-plane.  more » « less
Award ID(s):
1712119 1740858
PAR ID:
10109418
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Symposium on Graph Drawing and Network Visualization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper introduces and studies the following beyond-planarity problem, which we call h-Clique2Path Planarity. Let G be a simple topological graph whose vertices are partitioned into subsets of size at most h, each inducing a clique. h-Clique2Path Planarity asks whether it is possible to obtain a planar subgraph of G by removing edges from each clique so that the subgraph induced by each subset is a path. We investigate the complexity of this problem in relation to k-planarity. In particular, we prove that h-Clique2Path Planarity is NP-complete even when h=4 and G is a simple 3-plane graph, while it can be solved in linear time when G is a simple 1-plane graph, for any value of h. Our results contribute to the growing fields of hybrid planarity and of graph drawing beyond planarity. 
    more » « less
  2. null (Ed.)
    Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph g = (Vg, Eg) where each vertex ν ∈ Vg connects to at least γ fraction of the other vertices (i.e., ⌈γ · (|Vg|- 1)⌉ vertices) in g. Quasi-clique is one of the most natural definitions for dense structures useful in finding communities in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive. In this paper, we design parallel algorithms for mining maximal quasi-cliques on G-thinker, a distributed graph mining framework that decomposes mining into compute-intensive tasks to fully utilize CPU cores. We found that directly using G-thinker results in the straggler problem due to (i) the drastic load imbalance among different tasks and (ii) the difficulty of predicting the task running time. We address these challenges by redesigning G-thinker's execution engine to prioritize long-running tasks for execution, and by utilizing a novel timeout strategy to effectively decompose long-running tasks to improve load balancing. While this system redesign applies to many other expensive dense subgraph mining problems, this paper verifies the idea by adapting the state-of-the-art quasi-clique algorithm, Quick, to our redesigned G-thinker. Extensive experiments verify that our new solution scales well with the number of CPU cores, achieving 201× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges in a 16-node cluster. 
    more » « less
  3. The Gyárfás–Sumner conjecture says that for every tree T and every integer t ≥ 1, if G is a graph with no clique of size t and with sufficiently large chromatic number, then G contains an induced subgraph isomorphic to T. This remains open, but we prove that under the same hypotheses, G contains a subgraph H isomorphic to T that is “path-induced”; that is, for some distinguished vertex r, every path of H with one end r is an induced path of G. 
    more » « less
  4. The upper tail problem in a random graph asks to estimate the probability that the number of copies of some fixed subgraph in an Erdős‐Rényi random graph exceeds its expectation by some constant factor. There has been much exciting recent progress on this problem. We study the corresponding problem for hypergraphs, for which less is known about the large deviation rate. We present new phenomena in upper tail large deviations for sparse random hypergraphs that are not seen in random graphs. We conjecture a formula for the large deviation rate, that is, the first order asymptotics of the log‐probability that the number of copies of fixed subgraphHin a sparse Erdős‐Rényi randomk‐uniform hypergraph exceeds its expectation by a constant factor. This conjecture turns out to be significantly more intricate compared to the case for graphs. We verify our conjecture when the fixed subgraphHbeing counted is a clique, as well as whenHis the 3‐uniform 6‐vertex 4‐edge hypergraph consisting of alternating faces of an octahedron, where new techniques are required. 
    more » « less
  5. Meka, Raghu (Ed.)
    We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G=(V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph H. The existence of an edge in H can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of H using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation. 
    more » « less