skip to main content


Title: Josephson Detection of Time Reversal Symmetry Breaking s +/- is Superconductivity in SnTe Nanowires
Exotic superconductivity, such as high TC, topological, and heavy-fermion superconductors, often rely on phase sensitive measurements to determine the underlying pairing. Here we investigate the proximity-induced superconductivity in nanowires of SnTe, where a s±is′ superconducting state is produced that lacks the time-reversal and valley-exchange symmetry of the parent SnTe. A systematic breakdown of three conventional characteristics of Josephson junctions -- the DC Josephson effect, the AC Josephson effect, and the magnetic diffraction pattern -- fabricated from SnTe nanowire weak links elucidates this novel superconducting state. Further, the AC Josephson effect reveals evidence of a Majorana bound state, tuned by a perpendicular magnetic field. This work represents the definitive phase-sensitive measurement of novel s±is′ superconductivity, providing a new route to the investigation of fractional vortices, topological superconductivity, topological phase transitions, and new types of Josephson-based devices.  more » « less
Award ID(s):
1743896
NSF-PAR ID:
10109458
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXiv.org
ISSN:
2331-8422
Page Range / eLocation ID:
1907.04199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tcfault-tolerant qubit implementations from a device perspective.

     
    more » « less
  2. null (Ed.)
    Electric-magnetic duality or S-duality, extending the symmetry of Maxwell’s equations by including the symmetry between Noether electric charges and topological magnetic monopoles, is one of the most fundamental concepts of modern physics. In two-dimensional systems harboring Cooper pairs, S-duality manifests in the emergence of superinsulation, a state dual to superconductivity, which exhibits an infinite resistance at finite temperatures. The mechanism behind this infinite resistance is the linear charge confinement by a magnetic monopole plasma. This plasma constricts electric field lines connecting the charge–anti-charge pairs into electric strings, in analogy to quarks within hadrons. However, the origin of the monopole plasma remains an open question. Here, we consider a two-dimensional Josephson junction array (JJA) and reveal that the magnetic monopole plasma arises as quantum instantons, thus establishing the underlying mechanism of superinsulation as two-dimensional quantum tunneling events. We calculate the string tension and the dimension of an electric pion determining the minimal size of a system capable of hosting superinsulation. Our findings pave the way for study of fundamental S-duality in desktop experiments on JJA and superconducting films. 
    more » « less
  3. null (Ed.)
    The strong Ising spin–orbit coupling in certain two-dimensional transition metal dichalcogenides can profoundly affect the superconducting state in few-layer samples. For example, in NbSe2, this effect combines with the reduced dimensionality to stabilize the superconducting state against magnetic fields up to ~35 T, and could lead to topological superconductivity. Here we report a two-fold rotational symmetry of the superconducting state in few-layer NbSe2 under in-plane external magnetic fields, in contrast to the three-fold symmetry of the lattice. Both the magnetoresistance and critical field exhibit this two-fold symmetry, and it also manifests deep inside the superconducting state in NbSe2/CrBr3 superconductor-magnet tunnel junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behaviour to the mixing between two closely competing pairing instabilities, namely the conventional s-wave instability typical of bulk NbSe2 and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results demonstrate the unconventional character of the pairing interaction in few-layer transition metal dichalcogenides and highlight the exotic superconductivity in this family of two-dimensional materials. 
    more » « less
  4. - (Ed.)
    The cubic Laves phase compound CeRu2 with a Kagome substructure of Ru has been investigated to understand myriad fascinating phenomena resulting from competition among its various physical and geometric features. Such phenomena include flat bands, van Hove singularities, Dirac cones, reentrant superconductivity, magnetism, the Fulde–Ferrell–Larkin–Ovchinnikov state, valence fluctuations, time-irreversible anisotropic s-state superconductivity, etc. Extensive studies have thus been carried out since 1958 when the highly unusual coexistence of superconductivity and ferromagnetism was proposed for the mixed compounds (Ce,Gd)Ru2. Activity has accelerated in recent years due to increasing interest in topological states in superconductors. However, there has been little investigation of the mutual influence of these fascinating states. Therefore, we systematically investigated the superconductivity and possible Fermi surface topological change in CeRu2 via magnetic, resistivity, and structural measurements under pressure up to ~168 GPa. An unusual phase diagram that suggests an intriguing interplay between the compound’s superconducting order and Fermi surface topological order has been constructed. A resurgence in its superconducting transition temperature was observed above 28 GPa. Our experiments have identified a structural transition above 76 GPa and a few tantalizing phase transitions driven by high pressure. Our high-pressure results further suggest that superconductivity and Fermi surface topology in CeRu2 are strongly intertwined, 
    more » « less
  5. Abstract

    Josephson proximity junctions and devices employing topological insulators are promising candidates for realizing topological superconductivity and topologically protected quantum circuits. Here, the new type of oscillations of the critical Josephson current in the ballistic Nb‐Bi2Te2.3Se0.7‐Nb junctions subject to the magnetic fields is reported. The oscillations appear below ≈400 mK and have a very unusual sharp‐peaked shape. Their ultra‐short period ≈1 Oe, by orders of magnitude shorter than the expected periodicity due to fluxoid quantization in the device, corresponds to the extremely low energy scale ≈1 eV. It is established that the observed effect is due to the resonant transmission of Andreev quasiparticles via the peculiar energy levels forming near the S‐TI interfaces.

     
    more » « less