skip to main content


Title: Magnetic Monopoles and Superinsulation in Josephson Junction Arrays
Electric-magnetic duality or S-duality, extending the symmetry of Maxwell’s equations by including the symmetry between Noether electric charges and topological magnetic monopoles, is one of the most fundamental concepts of modern physics. In two-dimensional systems harboring Cooper pairs, S-duality manifests in the emergence of superinsulation, a state dual to superconductivity, which exhibits an infinite resistance at finite temperatures. The mechanism behind this infinite resistance is the linear charge confinement by a magnetic monopole plasma. This plasma constricts electric field lines connecting the charge–anti-charge pairs into electric strings, in analogy to quarks within hadrons. However, the origin of the monopole plasma remains an open question. Here, we consider a two-dimensional Josephson junction array (JJA) and reveal that the magnetic monopole plasma arises as quantum instantons, thus establishing the underlying mechanism of superinsulation as two-dimensional quantum tunneling events. We calculate the string tension and the dimension of an electric pion determining the minimal size of a system capable of hosting superinsulation. Our findings pave the way for study of fundamental S-duality in desktop experiments on JJA and superconducting films.  more » « less
Award ID(s):
1809188
NSF-PAR ID:
10250434
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Quantum Reports
Volume:
2
Issue:
3
ISSN:
2624-960X
Page Range / eLocation ID:
388 to 399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract On-shell methods are particularly suited for exploring the scattering of electrically and magnetically charged objects, for which there is no local and Lorentz invariant Lagrangian description. In this paper we show how to construct a Lorentz-invariant S -matrix for the scattering of electrically and magnetically charged particles, without ever having to refer to a Dirac string. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. The corresponding “pairwise helicity” is identified with the quantized “cross product” of charges, e 1 g 2 − e 2 g 1 , for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind of pairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S -matrix elements, as well as the full partial wave decomposition for the 2 → 2 fermion-monopole S -matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. Our construction provides a significant new achievement for the on-shell program, succeeding where the Lagrangian description has so far failed. 
    more » « less
  2. Resistivity saturation is found on both superconducting and insulating sides of an “avoided” magnetic-field-tuned superconductor-to-insulator transition (H-SIT) in a two-dimensional In/InO x composite, where the anomalous metallic behavior cuts off conductivity or resistivity divergence in the zero-temperature limit. The granular morphology of the material implies a system of Josephson junctions (JJs) with a broad distribution of Josephson coupling E J and charging energy E C , with an H-SIT determined by the competition between E J and E C . By virtue of self-duality across the true H-SIT, we invoke macroscopic quantum tunneling effects to explain the temperature-independent resistance where the “failed superconductor” side is a consequence of phase fluctuations and the “failed insulator” side results from charge fluctuations. While true self-duality is lost in the avoided transition, its vestiges are argued to persist, owing to the incipient duality of the percolative nature of the dissipative path in the underlying random JJ system. 
    more » « less
  3. Abstract

    The angular momentum of any quantum system should beunambiguouslyquantized. We show that such a quantization fails for a pure Dirac monopole due to a previously overlooked field angular momentum from the monopole-electric charge system coming from the magnetic field of the Dirac string and the electric field of the charge. Applying the point-splitting method to the monopole-charge system yields a total angular momentum which obeys the standard angular momentum algebra, but which is gaugevariant. In contrast it is possible to properly quantize the angular momentum of a topological ’t Hooft–Polyakov monopole plus charge. This implies that pure Dirac monopoles are not viable – only ’t Hooft–Polyakov monopoles are theoretically consistent with angular momentum quantization and gauge invariance.

     
    more » « less
  4. A bstract Celestial holography proposes a duality between gravitational scattering in asymptotically flat space-time and a conformal field theory living on the celestial sphere. Its dictionary relates the infinite dimensional space-time symmetry group to Ward identities of the CFT. The spontaneous breaking of these asymptotic symmetries governs the dynamics of the soft sector in the CFT. Here we show that this sector encodes non-trivial backreaction effects that exhibit characteristics of maximal quantum chaos. A key element in the derivation is the identification of the Hilbert space of celestial CFT, defined through radial quantization, with that of a constantly accelerating Rindler observer. From the point of view of the bulk, Rindler particles exhibit Lyapunov behavior due to shockwave interactions that shift the observer horizon. From the point of view of the boundary, the superrotation Goldstone modes affect the relevant representations of the celestial Virasoro symmetry in a manner that induces Lyapunov behavior of out-of-time-ordered celestial correlators. 
    more » « less
  5. Even the particle world is not immune to identity politics. Bosons have been in a bit of an identity crisis, or so it has seemed since 1989 ( 1 ). Quantum mechanics requires bosons made of two paired electrons to either condense into a superfluid with a well-defined phase with zero electrical resistance or localize in an insulating state with infinite resistance. The direct transition from superconducting to insulating states was widely observed in a range of thin films ( 2 – 4 ). The most popular model for explaining these observations ( 5 ) claims that the destruction of superconductivity occurs when the resistance of the thin film exceeds a critical value. For bosons on the brink of localization, electrically insulating behavior is observed if the resistance is greater than the quantum of resistance, R q = h /4 e 2 , otherwise superconductivity persists, where h is Planck's constant and e is the electric charge. On page 1505 of this issue, Yang et al. ( 6 ) offer a counterexample by establishing that a bosonic metallic phase disrupts the superconductor-insulator transition (SIT) in the high-temperature superconductor YBa 2 Cu 3 O 7– x (YBCO). 
    more » « less