The tris(aminophenol) ligand tris(4-methyl-2-(3′,5′-di- tert -butyl-2′-hydroxyphenylamino)phenyl)amine, MeClampH 6 , reacts with Ti(O i Pr) 4 to give, after exposure to air, the dark purple, neutral, diamagnetic complex (MeClamp)Ti. The compound is six-coordinate, with an uncoordinated central nitrogen (Ti–N = 2.8274(12) Å), and contains titanium( iv ) and a doubly oxidized ligand, formally a bis(iminosemiquinone)-mono(amidophenoxide). The compound is unsymmetrical in the solid state, though the three ligands are equivalent on the NMR timescale in solution. Ab initio calculations indicate that the ground state is a multiconfigurational singlet, with a low-lying multiconfigurational triplet state. Variable-temperature NMR measurements are consistent with a singlet–triplet gap of 1200 ± 70 cm −1 , in good agreement with calculations. The distortion from threefold symmetry allows a low-lying, partially populated ligand-centered π nonbonding orbital to mix with largely occupied metal–ligand π bonding orbitals. The energetic accessibility of this distortion is inversely related to the strength of the metal–ligand π bonding interaction.
more »
« less
Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex
In order to shed light on metal-dependent mechanisms for O–O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)– and Mn(III)–peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, as well as a Co-containing artificial leaf inspired by nature’s photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)–peroxo compound differ noticeably from the analogous Mn(III)–peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)–peroxo is more localized on the peroxo in an antibonding π*(O–O) orbital, whereas the HOMO of the structurally analogous Mn(III)–peroxo is delocalized over both the metal d-orbitals and peroxo π*(O–O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O–O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O–O bond of the former relative to the latter.
more »
« less
- Award ID(s):
- 1664682
- PAR ID:
- 10109517
- Date Published:
- Journal Name:
- JBIC Journal of Biological Inorganic Chemistry
- Volume:
- 24
- Issue:
- ASAP
- ISSN:
- 0949-8257
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report relatively persistent, open‐shell thiophene‐based double helices, radical cations 1•+‐TMS12and 2•+‐TMS8. Closed‐shell neutral double helices, 1‐TMS12and 2‐TMS8, have nearly identical first oxidation potentials,E+/0 ≈ +1.33 V, corresponding to reversible oxidation to their radical cations. The radical cations are generated, using tungsten hexachloride in dichloromethane (DCM) as an oxidant,E+/0 ≈ +1.56 V. EPR spectra consist of a relatively sharp singlet peak with an unusually lowg‐value of 2.001–2.002, thus suggesting exclusive delocalization of spin density over π‐conjugated system consisting of carbon atoms only. DFT computations confirm these findings, as only negligible fraction of spin density is found on sulfur and silicon atoms and the spin density is delocalized over a single tetrathiophene moiety. For radical cation, 1•+‐TMS12, energy level of the singly occupied molecular orbital (SOMO) lies below the four highest occupied molecular orbitals (HOMOs), thus indicating the SOMO–HOMO inversion (SHI) and therefore, violating the Aufbau principle. 1•+‐TMS12has a half‐life of the order of only 5 min at room temperature. EPR peak intensity of 2•+‐TMS8, which does not show SHI, is practically unchanged over at least 2 h.more » « less
-
The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds’ π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds’ orbitals about 65% metal-centered and 35% ligand-centered.more » « less
-
The Osme bond is defined as pairing a Group 8 metal atom as an electron acceptor in a noncovalent interaction with a nucleophile. DFT calculations with the ωB97XD functional consider MO4 (M = Ru, Os) as the Lewis acid, paired with a series of π electron donors C2H2, C2H4, C6H6, C4H5N, C4H4O, and C4H4S. The calculations establish interaction energies in the range between 9.5 and 26.4 kJ/mol. Os engages in stronger interactions than does Ru, and those involving more extensive π-systems within the aromatic rings form stronger bonds than do the smaller ethylene and acetylene. Extensive analysis questions the existence of a true Osme bond, as the bonding chiefly involves interactions with the three O atoms of MO4 that lie closest to the π-system, via π(C-C)→σ*(M-O) transfers. These interactions are supplemented by back donation from M-O bonds to the π*(CC) antibonding orbitals of the π-systems. Dispersion makes a large contribution to these interactions, higher than electrostatics and much greater than induction.more » « less
-
null (Ed.)Abstract Bonding in the ground state of C $${}_{2}$$ 2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of $$2$$ 2 , $$3$$ 3 , or $$4$$ 4 . Here we report on photoelectron spectra of the C $${}_{2}^{-}$$ 2 − anion, measured at a range of wavelengths using a high-resolution photoelectron imaging spectrometer, which reveal both the ground $${X}^{1}{\Sigma}_{\mathrm{g}}^{+}$$ X 1 Σ g + and first-excited $${a}^{3}{\Pi}_{{\mathrm{u}}}$$ a 3 Π u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from predominantly $$s$$ s -like ( $$3{\sigma}_{\mathrm{g}}$$ 3 σ g ) and $$p$$ p -like ( $$1{\pi }_{{\mathrm{u}}}$$ 1 π u ) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly $$sp$$ s p -mixed orbitals. This result suggests that the dominant contribution to the dicarbon bonding involves a double-bonded configuration, with 2 $$\pi$$ π bonds and no accompanying $$\sigma$$ σ bond.more » « less
An official website of the United States government

