skip to main content

Title: Supporting Elementary Teacher's Reflections on Equity in CS Education: A Case Study Approach
The dearth of women and people of color in the field of computer science is a well-documented phenomenon. Following Obama's 2016 declaration of the need for a nationwide CS for All movement in the US, educators, school districts, states and the US-based National Science Foundation have responded with an explosion of activity directed at developing computer science learning opportunities in K-12 settings. A major component of this effort is the creation of equitable CS learning opportunities for underrepresented populations. As a result, there exists a strong need for educational research on the development of equity-based theory and practice in CS education. This poster session reports on a work-in-progress study that uses a case study approach to engage twenty in-service elementary school teachers in reflecting on issues of equity in CS education as part of a three-day CS professional development workshop. Our work is unfolding in the context of a four-year university/district research practice partnership in a mid-sized city in the Northeastern United States. Teachers in our project are working to co-design integrated CS curriculum units for K-5 classrooms. We developed four case studies, drawn from the first year of our project, that highlight equity challenges teachers faced in the classroom when implementing the CS lessons. The case studies follow the "Teacher Moments" template created by the Teaching Systems Lab in Open Learning at MIT. The case study activity is meant to deepen reflection and discussion on how to create equitable learning opportunities for elementary school students. We present preliminary findings.  more » « less
Award ID(s):
1644725 1837086
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM Conference on International Computing Education Research
Page Range / eLocation ID:
319 to 320
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging in CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All. 
    more » « less
  2. In K-12 education, nearly all e"orts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. More seasoned teachers bene!t from deepening their content knowledge, peda gogical practices, and knowledge and capacity to provide equitable and inclusive learning experiences that results in students feeling a sense of belonging in computer science. This panel will discuss (a) the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitator, and (b) collectively outline a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportuni ties, and community for CS teachers. 
    more » « less
  3. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less
  4. Around the world, many K-12 school systems are seeking ways to provide youth with computer science (CS) learning experiences. Often organizations aim to develop these opportunities by building capacity among science, technology, engineering, and mathematics teachers. In other instances, school may engage with language arts, history, and library teachers to teach computer science content. Seldom, however, do schools leverage the rich opportunities for integrating computer science with physical education (PE). This paper explores an on-going partnership among university researchers, and elementary school coding and PE teachers. During spring of 2021, the group designed and tested coding and physical movement related activities for students to complete across their PE and coding classes. The team iterated on those activities throughout 2021 and 2022. This paper highlights the utility of this unique collaboration and describes some of the initial designs that emerged. The paper also touches on preliminary evaluation of the activities, and notes some of the project team's plans for future iterations. Broadly speaking, the activities piqued student interest and helped advance new perspectives of themselves, CS, and their teachers. 
    more » « less
  5. null (Ed.)
    In fall 2019, the National Science Foundation awarded Southern Oregon University a two-year Computer Science for All Researcher Practitioner Partnership grant focused on integrating computational thinking (CT) into the K'5 instruction of general elementary and elementary bilingual teachers. This experience report highlights the process of transitioning one essential component of the project an elementary teacher summer institute (SI) from in-person to online due to COVID-19. This report covers the approach the team took to designing the SI to work virtually, the challenges encountered, the experiences of the 15 teachers involved through observations and surveys, and the opportunities for refinement. This report will be of potential interest for other computer science (CS) education researchers who also may be working with elementary teachers to incorporate CS and CT activities into their instruction. 
    more » « less