skip to main content


Search for: All records

Award ID contains: 1837086

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here, we present the results of a study of in-service teachers’ responses to equity-based case study vignettes focused on racialized classroom incidents. This study was conducted in the context of an ongoing research practice partnership aimed at integrating computer science concepts in elementary grades. Our work took place in a public school district that enrolls primarily students of color, while largely employing White teachers and administrators. Using a racial literacy framework [Guinier 2004 ], we conceptualized a continuum and developed codes to analyze teachers’ responses from racially liberal to racially literate. Our results describe a range of positions across the continuum, including those consistent with the racial liberalism viewpoint that expresses individualistic views of meritocracy and colorblindness that sometimes supports a deficit view of students, those that reside in the middle who validate equity work through minimal acknowledgment yet find ways to resist further engagement with race or equity, and those who express views consistent with racial literacy practices including student-centered perspectives, asset-orientations, and the willingness to engage race directly. Further, our results indicate that teachers may express contradictory views or views across the continuum. These findings point to the developmental nature of racial literacy and the difficulty of unlearning racist mindsets. We discuss the efficacy of our case study design: anonymized, locally derived vignettes, and our case study learning activity design: written reflections, small group dialogues, and whole group share-outs in supporting teacher reflection and learning. Finally, we demonstrate the special leadership role of teachers who are moving toward racial literacy. 
    more » « less
  2. Despite the recent proliferation of research concerning integrating computational thinking (CT) into K-5th grade curriculum, there is little literature concerning how to evaluate the quality of CT integrated curricula, especially curricula integrating CT into language arts and social studies content areas. In this paper, we present a theoretically derived rubric for the evaluation of CT integrated curricula for grades K-5 across the curriculum (math, science, language arts, social studies). Our rubric is divided into two sections. The first section provides guidelines for identifying the integration type (disciplinary, multidisciplinary, interdisciplinary, or transdisciplinary). The second section presents six categories of evaluation that further subsume nine sub-categories. The principal categories of evaluation include the following: conceptual coherence, role of computational technology, assessment, use of multiple representations, play, and equity. We include the play category as an aspect of developmental appropriateness. Play is an important pedagogical approach for learning in the early grades. Our work takes place in the context of the Computer Science (CS) for All initiative in the United States which emphasizes the goal of improving racial and gender diversity in CS participation. Therefore, creating integrated lessons that address equity is important. Our paper describes rubric development from the theoretical perspectives that underlie the inclusion of each type, category, and sub-category. Our evaluative rubric can guide future efforts to integrate CT/CS into the elementary curricula. Researchers can utilize our rubric to evaluate and analyze CT-integrated curricula, and educators can benefit from using this rubric as a guideline for curriculum development. 
    more » « less
  3. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less
  4. The focus of this paper is to investigate how elementary students learned computer science concepts through storytelling in Scratch. To serve this purpose, we conducted artifact interviews with 4th graders who were engaged with a computer science (CS) integrated module in their English language arts (ELA) class. Students created stories in Scratch with a focus on character traits. The constructionist design of the Scratch tool supports student learning through tinkering, the creation of meaningful artifacts, and through the theatrical metaphor that underlies interface design. This paper explores how two 4th graders demonstrated their CS/CT and ELA knowledge through the design of a Scratch artifact and how Scratch facilitated this interdisciplinary learning. While there have been studies in middle school and in after-school contexts that focus on digital storytelling and writing, there are few papers that examine interdisciplinary integration in the formal school context at the elementary level. 
    more » « less
  5. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findings from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision 
    more » « less
  6. Until recently, computer science (CS) has been predominantly taught at upper-secondary or tertiary levels. Lately, however, CS curricula have been introduced into school systems from the very first year of school. In this paper, we undertake a participatory research approach, using focus group discussions between a group of experts in the field of evaluation and assessment at the primary level (K-5). The group considered the evaluation and assessment measures they have used, what their current needs are and how the CS education community can move towards meeting those needs. We present the discussion results as a position paper, situated in the context of broader education research. The experts identified three key priorities for the education research community: creating a universal taxonomy of assessment in the primary grades (K-5), creating measurements of student progression and growth over time, and creating culturally relevant evaluations and assessments. Through identifying key priorities, this work provides direction for urgently needed resource development and research directions for K-5 evaluation and assessment. 
    more » « less
  7. Teacher Moments is an open source resource for teacher educators to create and use practice-based simulations in teacher education. Teacher Moments may be used to create digital clinical simulations (DCS) which are defined as opportunities for improvisational interaction with scripted character(s). During the COVID-19 crisis, we implemented an equity-based simulation created by a teacher educator. Results demonstrate the utility of the system for surfacing student perspectives which, in turn, provides opportunities for deeper discussion and reflection. 
    more » « less