skip to main content


Title: Analysis of the Spatial Patterns of Rainfall across the Agro-Climatic Zones of Jema Watershed in the Northwestern Highlands of Ethiopia
The association between elevation (agro-climatic zones, ACZs) and the mean annual total rainfall (MATRF) is not straightforward in different parts of the world. This study sought to estimate the amount of MATRF across four elevation zones of Jema watershed, which is situated in the northwestern highlands of Ethiopia, by employing an appropriate interpolation method. The elevation of the watershed ranges from 1895 to 3518 m a.s.l. For the sake of this study, 34 sample MATRF data were extracted from satellite and nearby gauge stations that were recorded from 1983 to 2010. These data sources were reconstructed by International Research Institute for Climate and Society at Columbia University, USA, at a scale of 10 km by 10 km. An elevation data set generated from a digital elevation model with 30-m resolution (DEM 30 m) was considered as a covariable to estimate the MATRF. To identify the optimal interpolation model, mean errors were computed using cross-validation statistics. The root-mean-square error (RMSE) analysis showed that ordinary cokriging (OCK) was the most accurate model with a predictive power of 87.3%. The root-mean-square standardized (RMSSE) analysis showed that the best precision value (0.72) occurred in OCK. Stable and Gaussian trend lines together with local polynomial types of trend removal, and an elliptical neighborhood search function could perform best to maximize the accuracy and the precision of estimating MATRF. Elevation, as a covariable, enhanced the degree of accuracy and precision of estimation. The value of the trend line function (least square) between the MATRF and elevation was very weak (R2 = 0.07), whereas the value of trend line function (least square) between the MATRF and the longitude coordinates (east–west direction) was medium (R2 = 0.34). The estimated MATRF for the entire watershed under study ranged from 1228 to 1640 mm. To conclude, elevation could contribute to the estimation of the MATRF. The value of the MATRF showed a declining pattern from the lower to higher elevation areas of the watershed.  more » « less
Award ID(s):
1639214
NSF-PAR ID:
10109676
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geosciences
Volume:
9
Issue:
1
ISSN:
2076-3263
Page Range / eLocation ID:
22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The measurement of sea ice elevation above sea level or the “freeboard” depends upon an accurate retrieval of the local sea level. The local sea level has been previously retrieved from altimetry data alone by the lowest elevation method, where the percentage of the lowest elevations over a particular segment length scale was used. Here, we provide an evaluation of the scale dependence on these local sea level retrievals using data from NASA Operation IceBridge (OIB) which took place in the Ross Sea in 2013. This is a unique dataset of laser altimeter measurements over five tracks from the Airborne Topographic Mapper (ATM), with coincidently high-spatial resolution images from the Digital Mapping System (DMS), that allows for an independent sea level validation. The local sea level is first calculated by using the mean elevation of ATM L1B data over leads identified by using the corresponding DMS imagery. The resulting local sea level reference is then used as ground truth to validate the local sea levels retrieved from ATM L2 by using nine different percentages of the lowest elevation (0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, and 4%) at seven different segment length scales (1, 5, 10, 15, 20, 25, and 50 km) for each of the five ATM tracks. The closeness to the 1:1 line, R2, and root mean square error (RMSE) is used to quantify the accuracy of the retrievals. It is found that all linear least square fits are statistically significant (p < 0.05) using an F test at every scale for all tested data. In general, the sea level retrievals are farther away from the 1:1 line when the segment length scale increases from 1 or 5 to 50 km. We find that the retrieval accuracy is affected more by the segment length scale than the percentage scale. Based on our results, most retrievals underestimate the local sea level; the longer the segment length (from 1 to 50 km) used, especially at small percentage scales, the larger the error tends to be. The best local sea level based on a higher R2 and smaller RMSE for all the tracks combined is retrieved by using 0.1–2% of the lowest elevations at the 1–5 km segment lengths. 
    more » « less
  2. In this study, we present a nationwide machine learning model for hourly PM2.5 estimation for the continental United States (US) using high temporal resolution Geostationary Operational Environmental Satellites (GOES-16) Aerosol Optical Depth (AOD) data, meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) and ancillary data collected between May 2017 and December 2020. A model sensitivity analysis was conducted on predictor variables to determine the optimal model. It turns out that GOES16 AOD, variables from ECMWF, and ancillary data are effective variables in PM2.5 estimation and historical reconstruction, which achieves an average mean absolute error (MAE) of 3.0 μg/m3, and a root mean square error (RMSE) of 5.8 μg/m3. This study also found that the model performance as well as the site measured PM2.5 concentrations demonstrate strong spatial and temporal patterns. Specifically, in the temporal scale, the model performed best between 8:00 p.m. and 11:00 p.m. (UTC TIME) and had the highest coefficient of determination (R2) in Autumn and the lowest MAE and RMSE in Spring. In the spatial scale, the analysis results based on ancillary data show that the R2 scores correlate positively with the mean measured PM2.5 concentration at monitoring sites. Mean measured PM2.5 concentrations are positively correlated with population density and negatively correlated with elevation. Water, forests, and wetlands are associated with low PM2.5 concentrations, whereas developed, cultivated crops, shrubs, and grass are associated with high PM2.5 concentrations. In addition, the reconstructed PM2.5 surfaces serve as an important data source for pollution event tracking and PM2.5 analysis. For this purpose, from May 2017 to December 2020, hourly PM2.5 estimates were made for 10 km by 10 km and the PM2.5 estimates from August through November 2020 during the period of California Santa Clara Unite (SCU) Lightning Complex fires are presented. Based on the quantitative and visualization results, this study reveals that a number of large wildfires in California had a profound impact on the value and spatial-temporal distributions of PM2.5 concentrations. 
    more » « less
  3. Farmers and growers typically use approaches based on the crop environment and local meteorology, many of which are labor-intensive, to predict crop yield. These approaches have found broad acceptance but lack real-time and physiological feedback for near-daily management purposes. This is true for broad-acre crops, such as snap bean, which is valued at hundreds of millions of dollars in the annual agricultural market. We aim to investigate the relationships between snap bean yield and plant spectral and biophysical information, collected using a hyperspectral spectroradiometer (400 to 2500 nm). The experiment focused on 48 single snap bean plants (cv. Huntington) in a controlled greenhouse environment during the growth period (69 days). We used applicable accuracy and precision metrics from partial least squares regression and cross-validation methods to evaluate the predictive ability of two harvest stages, namely an early-harvest and late-harvest stage, against our yield indicator (bean pod weight). Four different spectral data sets were used to investigate whether such oversampled, hyperspectral data sets could accurately and precisely model observed variability in yield, in terms of the coefficient of determination (R2) and root-mean-square error (RMSE). The objective of our approach hinges on the philosophy that selected spectral bands from this study, i.e., those that best explain yield variability, can be downsampled from a hyperspectral system for use in a more cost-effective, operational multispectral sensor. Our results suggested the optimal period for spectral evaluation of snap bean yield is 20 to 25 or 32 days prior to harvest for the early- and late-harvest stages, respectively, with the best model performing at a low RMSE (3.02 g/plant) and a high coefficient of determination (R2 = 0.72). An unmanned aerial systems-mounted, affordable, and wavelength-programmable multispectral imager, with bands corresponding to those identified, could provide a near real-time and reliable yield estimate prior to harvest. 
    more » « less
  4. null (Ed.)
    Accurate, precise, and timely estimation of crop yield is key to a grower’s ability to proactively manage crop growth and predict harvest logistics. Such yield predictions typically are based on multi-parametric models and in-situ sampling. Here we investigate the extension of a greenhouse study, to low-altitude unmanned aerial systems (UAS). Our principal objective was to investigate snap bean crop (Phaseolus vulgaris) yield using imaging spectroscopy (hyperspectral imaging) in the visible to near-infrared (VNIR; 400–1000 nm) region via UAS. We aimed to solve the problem of crop yield modelling by identifying spectral features explaining yield and evaluating the best time period for accurate yield prediction, early in time. We introduced a Python library, named Jostar, for spectral feature selection. Embedded in Jostar, we proposed a new ranking method for selected features that reaches an agreement between multiple optimization models. Moreover, we implemented a well-known denoising algorithm for the spectral data used in this study. This study benefited from two years of remotely sensed data, captured at multiple instances over the summers of 2019 and 2020, with 24 plots and 18 plots, respectively. Two harvest stage models, early and late harvest, were assessed at two different locations in upstate New York, USA. Six varieties of snap bean were quantified using two components of yield, pod weight and seed length. We used two different vegetation detection algorithms. the Red-Edge Normalized Difference Vegetation Index (RENDVI) and Spectral Angle Mapper (SAM), to subset the fields into vegetation vs. non-vegetation pixels. Partial least squares regression (PLSR) was used as the regression model. Among nine different optimization models embedded in Jostar, we selected the Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) and their resulting joint ranking. The findings show that pod weight can be explained with a high coefficient of determination (R2 = 0.78–0.93) and low root-mean-square error (RMSE = 940–1369 kg/ha) for two years of data. Seed length yield assessment resulted in higher accuracies (R2 = 0.83–0.98) and lower errors (RMSE = 4.245–6.018 mm). Among optimization models used, ACO and SA outperformed others and the SAM vegetation detection approach showed improved results when compared to the RENDVI approach when dense canopies were being examined. Wavelengths at 450, 500, 520, 650, 700, and 760 nm, were identified in almost all data sets and harvest stage models used. The period between 44–55 days after planting (DAP) the optimal time period for yield assessment. Future work should involve transferring the learned concepts to a multispectral system, for eventual operational use; further attention should also be paid to seed length as a ground truth data collection technique, since this yield indicator is far more rapid and straightforward. 
    more » « less
  5. Abstract

    Radar accuracy in estimating qualitative precipitation estimation at distances larger than 120 km degrades rapidly because of increased volume coverage and beam height. The performance of the recently upgraded dual‐polarized technology to the NEXRAD network and its capabilities are in need of further examination, as improved rainfall estimates at large distances would allow for significant hydrological modelling improvements. Parameter based methods were applied to radars from St. Louis (KLSX) and Kansas City (KEAX), Missouri, USA, to test the precision and accuracy of both dual‐ and single‐polarized parameter estimations of precipitation at large distances. Hourly aggregated precipitation data from terrestrial‐based tipping buckets provided ground‐truthed reference data. For all KLSX data tested, an R(Z,ZDR) algorithm provided the smallest absolute error (3.7 mm h−1) and root‐mean‐square‐error (45%) values. For most KEAX data, R(ZDR,KDP) and R(KDP) algorithms performed best, with RMSE values of 37%. With approximately 100 h of precipitation data between April and October of 2014, nearly 800 and 400 mm of precipitation were estimated by radar precipitation algorithms but was not observed by terrestrial‐based precipitation gauges for KLSX and KEAX, respectively. Additionally, nearly 30 and 190 mm of measured precipitation observed by gauges were not detected by the radar rainfall estimates from KLSX and KEAX, respectively. Results improve understanding of radar based precipitation estimates from long ranges thereby advancing applications for hydrometeorological modelling and flood forecasting. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less