skip to main content


Title: Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data
High-quality retrieval of land surface phenology (LSP) is increasingly important for understanding the effects of climate change on ecosystem function and biosphere–atmosphere interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function, moving-average and first derivative based approaches, and retrieved LSP in the North Hemisphere for the period 1999–2017 from Copernicus Global Land Service (CGLS) SPOT-VEGETATION and PROBA-V leaf area index (LAI) 1 km V2.0 time series. We validated the LSP estimates with near-surface PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. Results showed a strong correlation (R2 > 0.7) between the satellite LSP and ground-based observations from both PhenoCam and FLUXNET for the timing of the start (SoS) and R2 > 0.5 for the end of season (EoS). The threshold-based method performed the best with a root mean square error of ~9 d with PhenoCam and ~7 d with FLUXNET for the timing of SoS (30th percentile of the annual amplitude), and ~12 d and ~10 d, respectively, for the timing of EoS (40th percentile).  more » « less
Award ID(s):
1832210 1637685 1702697
NSF-PAR ID:
10213482
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
18
ISSN:
2072-4292
Page Range / eLocation ID:
3077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Land surface phenology (LSP) products are currently of large uncertainties due to cloud contaminations and other impacts in temporal satellite observations and they have been poorly validated because of the lack of spatially comparable ground measurements. This study provided a reference dataset of gap-free time series and phenological dates by fusing the Harmonized Landsat 8 and Sentinel-2 (HLS) observations with near-surface PhenoCam time series for 78 regions of 10 × 10 km2across ecosystems in North America during 2019 and 2020. The HLS-PhenoCam LSP (HP-LSP) reference dataset at 30 m pixels is composed of: (1) 3-day synthetic gap-free EVI2 (two-band Enhanced Vegetation Index) time series that are physically meaningful to monitor the vegetation development across heterogeneous levels, train models (e.g., machine learning) for land surface mapping, and extract phenometrics from various methods; and (2) four key phenological dates (accuracy ≤5 days) that are spatially continuous and scalable, which are applicable to validate various satellite-based phenology products (e.g., global MODIS/VIIRS LSP), develop phenological models, and analyze climate impacts on terrestrial ecosystems.

     
    more » « less
  2. Detecting crop phenology with satellite time series is important to characterize agroecosystem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics in the context of on-the-ground crop phenological events remains a long-standing hurdle. Over the recent years, the emergence of near-surface phenology cameras (e.g., PhenoCams), along with the satellite imagery of both high spatial and temporal resolutions (e.g., PlanetScope imagery), has largely facilitated direct comparisons of retrieved characteristics to visually observed crop stages for phenological interpretation and validation. The goal of this study is to systematically assess near-surface PhenoCams and high-resolution PlanetScope time series in reconciling sensor- and ground-based crop phenological characterizations. With two critical crop stages (i.e., crop emergence and maturity stages) as an example, we retrieved diverse phenological characteristics from both PhenoCam and PlanetScope imagery for a range of agricultural sites across the United States. The results showed that the curvature-based Greenup and Gu-based Upturn estimates showed good congruence with the visually observed crop emergence stage (RMSE about 1 week, bias about 0–9 days, and R square about 0.65–0.75). The threshold- and derivative-based End of greenness falling Season (i.e., EOS) estimates reconciled well with visual crop maturity observations (RMSE about 5–10 days, bias about 0–8 days, and R square about 0.6–0.75). The concordance among PlanetScope, PhenoCam, and visual phenology demonstrated the potential to interpret the fine-scale sensor-derived phenological characteristics in the context of physiologically well-characterized crop phenological events, which paved the way to develop formal protocols for bridging ground-satellite phenological characterization. 
    more » « less
  3. Abstract

    Vegetation phenology is a key control on water, energy, and carbon fluxes in terrestrial ecosystems. Because vegetation canopies are heterogeneous, spatially explicit information related to seasonality in vegetation activity provides valuable information for studies that use eddy covariance measurements to study ecosystem function and land-atmosphere interactions. Here we present a land surface phenology (LSP) dataset derived at 3 m spatial resolution from PlanetScope imagery across a range of plant functional types and climates in North America. The dataset provides spatially explicit information related to the timing of phenophase changes such as the start, peak, and end of vegetation activity, along with vegetation index metrics and associated quality assurance flags for the growing seasons of 2017–2021 for 10 × 10 km windows centred over 104 eddy covariance towers at AmeriFlux and National Ecological Observatory Network (NEON) sites. These LSP data can be used to analyse processes controlling the seasonality of ecosystem-scale carbon, water, and energy fluxes, to evaluate predictions from land surface models, and to assess satellite-based LSP products.

     
    more » « less
  4. Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20 corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding. 
    more » « less
  5. Land surface phenology (LSP) enables global-scale tracking of ecosystem processes, but its utility is limited in drylands due to low vegetation cover and resulting low annual amplitudes of vegetation indices (VIs). Due to the importance of drylands for biodiversity, food security, and the carbon cycle, it is necessary to understand the limitations in measuring dryland dynamics. Here, using simulated data and multitemporal unmanned aerial vehicle (UAV) imagery of a desert shrubland, we explore the feasibility of detecting LSP with respect to fractional vegetation cover, plant functional types, VI uncertainty, and two different detection algorithms. Using simulated data, we found that plants with distinct VI signals, such as deciduous shrubs, can require up to 60% fractional cover to consistently detect LSP. Evergreen plants, with lower seasonal VI amplitude, require considerably higher cover and can have undetectable phenology even with 100% vegetation cover. Our evaluation of two algorithms showed that neither performed the best in all cases. Even with adequate cover, biases in phenological metrics can still exceed 20 days and can never be 100% accurate due to VI uncertainty from shadows, sensor view angle, and atmospheric interference. We showed how high-resolution UAV imagery enables LSP studies in drylands and highlighted important scale effects driven by within-canopy VI variation. With high-resolution imagery, the open canopies of drylands are beneficial as they allow for straightforward identification of individual plants, enabling the tracking of phenology at the individual level. Drylands thus have the potential to become an exemplary environment for future LSP research. 
    more » « less