skip to main content

Title: Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice
The measurement of sea ice elevation above sea level or the “freeboard” depends upon an accurate retrieval of the local sea level. The local sea level has been previously retrieved from altimetry data alone by the lowest elevation method, where the percentage of the lowest elevations over a particular segment length scale was used. Here, we provide an evaluation of the scale dependence on these local sea level retrievals using data from NASA Operation IceBridge (OIB) which took place in the Ross Sea in 2013. This is a unique dataset of laser altimeter measurements over five tracks from the Airborne Topographic Mapper (ATM), with coincidently high-spatial resolution images from the Digital Mapping System (DMS), that allows for an independent sea level validation. The local sea level is first calculated by using the mean elevation of ATM L1B data over leads identified by using the corresponding DMS imagery. The resulting local sea level reference is then used as ground truth to validate the local sea levels retrieved from ATM L2 by using nine different percentages of the lowest elevation (0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, and 4%) at seven different segment length scales (1, 5, 10, 15, 20, 25, more » and 50 km) for each of the five ATM tracks. The closeness to the 1:1 line, R2, and root mean square error (RMSE) is used to quantify the accuracy of the retrievals. It is found that all linear least square fits are statistically significant (p < 0.05) using an F test at every scale for all tested data. In general, the sea level retrievals are farther away from the 1:1 line when the segment length scale increases from 1 or 5 to 50 km. We find that the retrieval accuracy is affected more by the segment length scale than the percentage scale. Based on our results, most retrievals underestimate the local sea level; the longer the segment length (from 1 to 50 km) used, especially at small percentage scales, the larger the error tends to be. The best local sea level based on a higher R2 and smaller RMSE for all the tracks combined is retrieved by using 0.1–2% of the lowest elevations at the 1–5 km segment lengths. « less
Authors:
; ; ;
Award ID(s):
1835784 1341717 1835507
Publication Date:
NSF-PAR ID:
10207898
Journal Name:
Remote Sensing
Volume:
12
Issue:
22
Page Range or eLocation-ID:
3732
ISSN:
2072-4292
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  2. Detecting crop phenology with satellite time series is important to characterize agroecosystem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics in the context of on-the-ground crop phenological events remains a long-standing hurdle. Over the recent years, the emergence of near-surface phenology cameras (e.g., PhenoCams), along with the satellite imagery of both high spatial and temporal resolutions (e.g., PlanetScope imagery), has largely facilitated direct comparisons of retrieved characteristics to visually observed crop stages for phenological interpretation and validation. The goal of this study is to systematically assess near-surface PhenoCams and high-resolution PlanetScope time series in reconciling sensor- and ground-based crop phenological characterizations. With two critical crop stages (i.e., crop emergence and maturity stages) as an example, we retrieved diverse phenological characteristics from both PhenoCam and PlanetScope imagery for a range of agricultural sites across the United States. The results showed that the curvature-based Greenup and Gu-based Upturn estimates showed good congruence with the visually observed crop emergence stage (RMSE about 1 week, bias about 0–9 days, and R square about 0.65–0.75). The threshold- and derivative-based End of greenness falling Season (i.e., EOS) estimates reconciled well with visual cropmore »maturity observations (RMSE about 5–10 days, bias about 0–8 days, and R square about 0.6–0.75). The concordance among PlanetScope, PhenoCam, and visual phenology demonstrated the potential to interpret the fine-scale sensor-derived phenological characteristics in the context of physiologically well-characterized crop phenological events, which paved the way to develop formal protocols for bridging ground-satellite phenological characterization.« less
  3. In this study, we present a nationwide machine learning model for hourly PM2.5 estimation for the continental United States (US) using high temporal resolution Geostationary Operational Environmental Satellites (GOES-16) Aerosol Optical Depth (AOD) data, meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) and ancillary data collected between May 2017 and December 2020. A model sensitivity analysis was conducted on predictor variables to determine the optimal model. It turns out that GOES16 AOD, variables from ECMWF, and ancillary data are effective variables in PM2.5 estimation and historical reconstruction, which achieves an average mean absolute error (MAE) of 3.0 μg/m3, and a root mean square error (RMSE) of 5.8 μg/m3. This study also found that the model performance as well as the site measured PM2.5 concentrations demonstrate strong spatial and temporal patterns. Specifically, in the temporal scale, the model performed best between 8:00 p.m. and 11:00 p.m. (UTC TIME) and had the highest coefficient of determination (R2) in Autumn and the lowest MAE and RMSE in Spring. In the spatial scale, the analysis results based on ancillary data show that the R2 scores correlate positively with the mean measured PM2.5 concentration at monitoring sites. Mean measured PM2.5 concentrationsmore »are positively correlated with population density and negatively correlated with elevation. Water, forests, and wetlands are associated with low PM2.5 concentrations, whereas developed, cultivated crops, shrubs, and grass are associated with high PM2.5 concentrations. In addition, the reconstructed PM2.5 surfaces serve as an important data source for pollution event tracking and PM2.5 analysis. For this purpose, from May 2017 to December 2020, hourly PM2.5 estimates were made for 10 km by 10 km and the PM2.5 estimates from August through November 2020 during the period of California Santa Clara Unite (SCU) Lightning Complex fires are presented. Based on the quantitative and visualization results, this study reveals that a number of large wildfires in California had a profound impact on the value and spatial-temporal distributions of PM2.5 concentrations.« less
  4. The association between elevation (agro-climatic zones, ACZs) and the mean annual total rainfall (MATRF) is not straightforward in different parts of the world. This study sought to estimate the amount of MATRF across four elevation zones of Jema watershed, which is situated in the northwestern highlands of Ethiopia, by employing an appropriate interpolation method. The elevation of the watershed ranges from 1895 to 3518 m a.s.l. For the sake of this study, 34 sample MATRF data were extracted from satellite and nearby gauge stations that were recorded from 1983 to 2010. These data sources were reconstructed by International Research Institute for Climate and Society at Columbia University, USA, at a scale of 10 km by 10 km. An elevation data set generated from a digital elevation model with 30-m resolution (DEM 30 m) was considered as a covariable to estimate the MATRF. To identify the optimal interpolation model, mean errors were computed using cross-validation statistics. The root-mean-square error (RMSE) analysis showed that ordinary cokriging (OCK) was the most accurate model with a predictive power of 87.3%. The root-mean-square standardized (RMSSE) analysis showed that the best precision value (0.72) occurred in OCK. Stable and Gaussian trend lines together with local polynomialmore »types of trend removal, and an elliptical neighborhood search function could perform best to maximize the accuracy and the precision of estimating MATRF. Elevation, as a covariable, enhanced the degree of accuracy and precision of estimation. The value of the trend line function (least square) between the MATRF and elevation was very weak (R2 = 0.07), whereas the value of trend line function (least square) between the MATRF and the longitude coordinates (east–west direction) was medium (R2 = 0.34). The estimated MATRF for the entire watershed under study ranged from 1228 to 1640 mm. To conclude, elevation could contribute to the estimation of the MATRF. The value of the MATRF showed a declining pattern from the lower to higher elevation areas of the watershed.« less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>