skip to main content


Title: Asynchronous Execution of Python Code on Task-Based Runtime Systems
Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor high-productivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards.  more » « less
Award ID(s):
1737785
NSF-PAR ID:
10109768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE/ACM 4th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)
Page Range / eLocation ID:
37 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  2. Poole, Steve ; Hernandez, Oscar ; Baker, Matthew ; Curtis, Tony (Ed.)
    SHMEM-ML is a domain specific library for distributed array computations and machine learning model training & inference. Like other projects at the intersection of machine learning and HPC (e.g. dask, Arkouda, Legate Numpy), SHMEM-ML aims to leverage the performance of the HPC software stack to accelerate machine learning workflows. However, it differs in a number of ways. First, SHMEM-ML targets the full machine learning workflow, not just model training. It supports a general purpose nd-array abstraction commonly used in Python machine learning applications, and efficiently distributes transformation and manipulation of this ndarray across the full system. Second, SHMEM-ML uses OpenSHMEM as its underlying communication layer, enabling high performance networking across hundreds or thousands of distributed processes. While most past work in high performance machine learning has leveraged HPC message passing communication models as a way to efficiently exchange model gradient updates, SHMEM-ML’s focus on the full machine learning lifecycle means that a more flexible and adaptable communication model is needed to support both fine and coarse grain communication. Third, SHMEM-ML works to interoperate with the broader Python machine learning software ecosystem. While some frameworks aim to rebuild that ecosystem from scratch on top of the HPC software stack, SHMEM-ML is built on top of Apache Arrow, an in-memory standard for data formatting and data exchange between libraries. This enables SHMEM-ML to share data with other libraries without creating copies of data. This paper describes the design, implementation, and evaluation of SHMEM-ML – demonstrating a general purpose system for data transformation and manipulation while achieving up to a 38× speedup in distributed training performance relative to the industry standard Horovod framework without a regression in model metrics. 
    more » « less
  3. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broad categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1]. 
    more » « less
  4. null (Ed.)
    High Performance Computing (HPC) stands at the forefront of engineering innovation. With affordable and advanced HPC resources more readily accessible than ever before, computational simulation of complex physical phenomena becomes an increasingly attractive strategy to predict the physical behavior of diverse engineered systems. Furthermore, novel applications of HPC in engineering are highly interdisciplinary, requiring advanced skills in mathematical modeling, algorithm development as well as programming skills for parallel, distributed and concurrent architectures and environments. This and other possible reasons have created a shortage of qualified workforce to conduct the much-needed research and development in these areas. This paper describes our experience with mentoring a cohort of ten high achieving undergraduate students in Summer 2019 to conduct engineering HPC research for ten weeks in X University. Our mentoring activity was informed and motivated by an initial informal study with the goal to learn the roles and status of HPC in engineering research and what can be improved to make more effective use of it. Through a combination of email surveys, in-person interviews, and a manual analysis of faculty research profiles in X University, we learn several lessons. First, a large proportion of the engineering faculty conducts research that is highly mathematical and computational and driven by disciplinary sciences, where simulation and HPC are widely needed as solutions. Second, due to the lack of resources to provide the necessary training in software development to their students, the interviewed engineering groups are limited in their ability to fully leveraging HPC capability in their research. Therefore, novel pathways for training and educating engineering researchers in HPC software development must be explored in order to further advance the engineering research capability in HPC. With a multi-year support from NSF, our summer research mentoring activities were able to accommodate ten high-achieving undergraduate students recruited from across the USA and their faculty mentors on the theme of HPC applications in engineering research. We describe the processes of students recruitment and selection, training and engagement, research mentoring, and professional development for the students. Best practices and lessons learned are identified and summarized based on our own observations and the evaluation conducted by an independent evaluator. In particular, improvements are being planned so as to deliver a more wholistic and rigorous research experience for future cohorts. 
    more » « less
  5. Computing derivatives is key to many algorithms in scientific computing and machine learning such as optimization, uncertainty quantification, and stability analysis. Enzyme is a LLVM compiler plugin that performs reverse-mode automatic differentiation (AD) and thus generates high performance gradients of programs in languages including C/C++, Fortran, Julia, and Rust. Prior to this work, Enzyme and other AD tools were not capable of generating gradients of GPU kernels. Our paper presents a combination of novel techniques that make Enzyme the first fully automatic reversemode AD tool to generate gradients of GPU kernels. Since unlike other tools Enzyme performs automatic differentiation within a general-purpose compiler, we are able to introduce several novel GPU and AD-specific optimizations. To show the generality and efficiency of our approach, we compute gradients of five GPU-based HPC applications, executed on NVIDIA and AMD GPUs. All benchmarks run within an order of magnitude of the original program's execution time. Without GPU and AD-specific optimizations, gradients of GPU kernels either fail to run from a lack of resources or have infeasible overhead. Finally, we demonstrate that increasing the problem size by either increasing the number of threads or increasing the work per thread, does not substantially impact the overhead from differentiation. 
    more » « less