skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parsing Meaning Representations: is Easier Always Better?
The parsing accuracy varies a great deal for different meaning representations. In this paper, we compare the parsing performances between Abstract Meaning Representation (AMR) and Minimal Recursion Semantics (MRS), and provide an in-depth analysis of what factors contributed to the discrepancy in their parsing accuracy. By crystalizing the trade-off between representation expressiveness and ease of automatic parsing, we hope our results can help inform the design of the next-generation meaning representations.  more » « less
Award ID(s):
1763926
PAR ID:
10109836
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the First International Workshop on Designing Meaning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing and logic rules to guide a neural network, and minimizing human intervention. On test data, the model achieves promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks. 
    more » « less
  2. null (Ed.)
    We present algorithms for extracting Hyperedge Replacement Grammar (HRG) rules from a graph along with a vertex order. Our algorithms are based on finding a tree decomposition of smallest width, relative to the vertex order, and then extracting one rule for each node in this structure. The assumption of a fixed order for the vertices of the input graph makes it possible to solve the problem in polynomial time, in contrast to the fact that the problem of finding optimal tree decompositions for a graph is NP-hard. We also present polynomial-time algorithms for parsing based on our HRGs, where the input is a vertex sequence and the output is a graph structure. The intended application of our algorithms is grammar extraction and parsing for semantic representation of natural language. We apply our algorithms to data annotated with Abstract Meaning Representations and report on the characteristics of the resulting grammars. 
    more » « less
  3. Uniform Meaning Representation (UMR) is the next phase of semantic formalism following Abstract Meaning Representation (AMR), with added focus on inter-sentential relations allowing the representational scope of UMR to cover a full document. This, in turn, greatly increases the complexity of its parsing task with the additional requirement of capturing document-level linguistic phenomena such as coreference, modal and temporal dependencies. In order to establish a strong baseline despite the small size of recently released UMR v1.0 corpus, we introduce a pipeline model that does not require any training. At the core of our method is a two-track strategy of obtaining UMR’s sentence and document graphs separately, with the document-level triples being compiled at the token level and the sentence graph being converted from AMR graphs. By leveraging alignment between AMR and its sentence, we are able to generate the first automatic English UMR parses. 
    more » « less
  4. Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces. 
    more » « less
  5. null (Ed.)
    In this paper we present Uniform Meaning Representation (UMR), a meaning representation designed to annotate the semantic content of a text. UMR is primarily based on Abstract Meaning Representation (AMR), an annotation framework initially designed for English, but also draws from other meaning representations. UMR extends AMR to other languages, particularly morphologically complex, low-resource languages. UMR also adds features to AMR that are critical to semantic interpretation and enhances AMR by proposing a companion document-level representation that captures linguistic phenomena such as coreference as well as temporal and modal dependencies that potentially go beyond sentence boundaries. 
    more » « less