skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating UMR Adoption: Neuro-Symbolic Conversion from AMR-to-UMR with Low Supervision
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing and logic rules to guide a neural network, and minimizing human intervention. On test data, the model achieves promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.  more » « less
Award ID(s):
2213805
PAR ID:
10527741
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ELRA and ICCL
Date Published:
Format(s):
Medium: X
Location:
https://aclanthology.org/2024.dmr-1.15/
Sponsoring Org:
National Science Foundation
More Like this
  1. Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)
    Uniform Meaning Representation (UMR) is a semantic labeling system in the AMR family designed to be uniformly applicable to typologically diverse languages. The UMR labeling system is quite thorough and can be time-consuming to execute, especially if annotators are starting from scratch. In this paper, we focus on methods for bootstrapping UMR annotations for a given language from existing resources, and specifically from typical products of language documentation work, such as lexical databases and interlinear glossed text (IGT). Using Arapaho as our test case, we present and evaluate a bootstrapping process that automatically generates UMR subgraphs from IGT. Additionally, we describe and evaluate a method for bootstrapping valency lexicon entries from lexical databases for both the target language and English. We are able to generate enough basic structure in UMR graphs from the existing Arapaho interlinearized texts to automate UMR labeling to a significant extent. Our method thus has the potential to streamline the process of building meaning representations for new languages without existing large-scale computational resources. 
    more » « less
  2. Uniform Meaning Representation (UMR) is the next phase of semantic formalism following Abstract Meaning Representation (AMR), with added focus on inter-sentential relations allowing the representational scope of UMR to cover a full document. This, in turn, greatly increases the complexity of its parsing task with the additional requirement of capturing document-level linguistic phenomena such as coreference, modal and temporal dependencies. In order to establish a strong baseline despite the small size of recently released UMR v1.0 corpus, we introduce a pipeline model that does not require any training. At the core of our method is a two-track strategy of obtaining UMR’s sentence and document graphs separately, with the document-level triples being compiled at the token level and the sentence graph being converted from AMR graphs. By leveraging alignment between AMR and its sentence, we are able to generate the first automatic English UMR parses. 
    more » « less
  3. This paper presents detailed mappings between the structures used in Abstract Meaning Representation (AMR) and those used in Uniform Meaning Representation (UMR). These structures include general semantic roles, rolesets, and concepts that are largely shared between AMR and UMR, but with crucial differences. While UMR annotation of new low-resource languages is ongoing, AMR-annotated corpora already exist for many languages, and these AMR corpora are ripe for conversion to UMR format. Rather than focusing on semantic coverage that is new to UMR (which will likely need to be dealt with manually), this paper serves as a resource (with illustrated mappings) for users looking to understand the fine-grained adjustments that have been made to the representation techniques for semantic categories present in both AMR and UMR. 
    more » « less
  4. Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)
    We explore using LLMs, GPT-4 specifically, to generate draft sentence-level Chinese Uniform Meaning Representations (UMRs) that human annotators can revise to speed up the UMR annotation process. In this study, we use few-shot learning and Think-Aloud prompting to guide GPT-4 to generate sentence-level graphs of UMR. Our experimental results show that compared with annotating UMRs from scratch, using LLMs as a preprocessing step reduces the annotation time by two thirds on average. This indicates that there is great potential for integrating LLMs into the pipeline for complicated semantic annotation tasks. 
    more » « less
  5. Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)
    We explore using LLMs, GPT-4 specifically, to generate draft sentence-level Chinese Uniform Meaning Representations (UMRs) that human annotators can revise to speed up the UMR annotation process. In this study, we use few-shot learning and Think-Aloud prompting to guide GPT-4 to generate sentence-level graphs of UMR. Our experimental results show that compared with annotating UMRs from scratch, using LLMs as a preprocessing step reduces the annotation time by two thirds on average. This indicates that there is great potential for integrating LLMs into the pipeline for complicated semantic annotation tasks. 
    more » « less