skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large teams develop and small teams disrupt science and technology
One of the most universal trends in science and technology today is the growth of large teams in all areas, as solitary researchers and small teams diminish in prevalence1,2,3. Increases in team size have been attributed to the specialization of scientific activities3, improvements in communication technology4,5, or the complexity of modern problems that require interdisciplinary solutions6,7,8. This shift in team size raises the question of whether and how the character of the science and technology produced by large teams differs from that of small teams. Here we analyse more than 65 million papers, patents and software products that span the period 1954–2014, and demonstrate that across this period smaller teams have tended to disrupt science and technology with new ideas and opportunities, whereas larger teams have tended to develop existing ones. Work from larger teams builds on more-recent and popular developments, and attention to their work comes immediately. By contrast, contributions by smaller teams search more deeply into the past, are viewed as disruptive to science and technology and succeed further into the future—if at all. Observed differences between small and large teams are magnified for higher-impact work, with small teams known for disruptive work and large teams for developing work. Differences in topic and research design account for a small part of the relationship between team size and disruption; most of the effect occurs at the level of the individual, as people move between smaller and larger teams. These results demonstrate that both small and large teams are essential to a flourishing ecology of science and technology, and suggest that, to achieve this, science policies should aim to support a diversity of team sizes.  more » « less
Award ID(s):
1829366 1829344
PAR ID:
10109889
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nature
Volume:
566
ISSN:
0028-0836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With teams growing in all areas of scientific and scholarly research, we explore the relationship between team structure and the character of knowledge they produce. Drawing on 89,575 self-reports of team member research activity underlying scientific publications, we show how individual activities cohere into broad roles of 1) leadership through the direction and presentation of research and 2) support through data collection, analysis, and discussion. The hidden hierarchy of a scientific team is characterized by its lead (or L) ratio of members playing leadership roles to total team size. The L ratio is validated through correlation with imputed contributions to the specific paper and to science as a whole, which we use to effectively extrapolate the L ratio for 16,397,750 papers where roles are not explicit. We find that, relative to flat, egalitarian teams, tall, hierarchical teams produce less novelty and more often develop existing ideas, increase productivity for those on top and decrease it for those beneath, and increase short-term citations but decrease long-term influence. These effects hold within person—the same person on the same-sized team produces science much more likely to disruptively innovate if they work on a flat, high-L-ratio team. These results suggest the critical role flat teams play for sustainable scientific advance and the training and advancement of scientists. 
    more » « less
  2. Abstract Professionals need to collaborate with multiple stakeholders in product development to stay competitive and to innovate. Through their values and mission, companies develop a specific working environment that can lead to the development of design methods and tools. In this article, we study design team dynamics of professional engineers working in two different organizations. We aim at identifying differences in team behaviors between teams drawn from two different organizations. The goal is twofold. At a theoretical level, we aim at gaining a better understanding of the effect of work culture on design team behaviors. At a methodological level, we explore whether grouping teams from different organizations into a single larger sample to obtain better reliability is relevant. To do this, we compared two cohorts of teams based on which company engineers worked at. Both companies are international organizations employing more than 50,000 collaborators worldwide. Teams of three engineers worked on designing a next-generation personal assistant and entertainment system for the year 2025. We analyzed each team’s design interactions and behaviors using quantitative tools (Multiple Factor Analysis and Correspondence Analysis). Results from this exploratory analysis highlight different behaviors between cohorts as well as a common overall approach to team design thinking. 
    more » « less
  3. null (Ed.)
    Adopting new technology is challenging for volunteer moderation teams of online communities. Challenges are aggravated when communities increase in size. In a prior qualitative study, Kiene et al. found evidence that moderator teams adapted to challenges by relying on their experience in other technological platforms to guide the creation and adoption of innovative custom moderation "bots." In this study, we test three hypotheses on the social correlates of user innovated bot usage drawn from a previous qualitative study. We find strong evidence of the proposed relationship between community size and the use of user innovated bots. Although previous work suggests that smaller teams of moderators will be more likely to use these bots and that users with experience moderating in the previous platform will be more likely to do so, we find little evidence in support of either proposition. 
    more » « less
  4. Teamwork has become more important in recent decades. We show that larger teams generate an unintended side effect: individuals who finish their PhD when the average team in their field is larger have worse career prospects. Our analysis combines data on career outcomes from the Survey of Doctorate Recipients with publication data that measures team size from ISI Web of Science. As average team size in a field increased over time, junior academic scientists became less likely to secure research funding or obtain tenure and were more likely to leave academia relative to their older counterparts. The team size effect can fully account for the observed decline in tenure prospects in academic science. The rise in team size was not associated with the end of mandatory retirement. However, the doubling of the NIH budget was associated with a significant increase in team size. Our results demonstrate that academic science has not adjusted its reward structure, which is largely individual, in response to team science. Failing to address these concerns means a significant loss as junior scientists exit after a costly and specialized education in science. 
    more » « less
  5. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less