skip to main content

Title: Application of Digital Image Correlation (DIC) to the Measurement of Strain Concentration of a PVA Dual-Crosslink Hydrogel Under Large Deformation
Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a non-contact, full-field deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up to more » strains of over 10, even in the presence of very high strain gradients near a crack tip. The method is then applied to verify a theoretical prediction that the deformation field in a cracked sample under relaxation loading, i.e. constant applied boundary displacement, is stationary in time even as the stress relaxes by a factor of three. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Experimental Mechanics
Sponsoring Org:
National Science Foundation
More Like this
  1. This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasivemore »water jet cutting. HGU assembly is accomplished using 3D printed truing clips and results in a rigid three-dimensional glass frame. Testing was done with the HGU oriented such that load was introduced on the short side edges of the two deck plates, resulting in an asymmetric load-support condition. A soft interface material was used between the HGU and steel plates of the hydraulic actuator and support for the purpose of avoiding premature cracking from local stress concentrations on the glass edges at the load and support locations. Force was applied in displacement control at 0.25 mm/minute with a full array of displacement and strain sensors. Test results for load vs. center deck plate transverse deflection are shown in Figure 2. All samples failed explosively by flexural buckling with no premature cracking on the load and support edges of the deck plates. Strain and deformation data clearly show the presence of second-order behavior resulting from bending deformation perpendicular to the plane of the deck plates. In general, linear axial behavior transitions to nonlinear second-order behavior, with increasing rates in deflection and strain growth, ultimately ending in glass fracture on the tension surfaces of the buckled deck plates. The failure resulted in near-complete disintegration of the deck plates, but with no observable cracking in any side plates and a secure connection on all adhesive tape. Results of the experimental program clearly demonstrate the feasibility of using HGUs for modular construction of compression dominant all-glass shell-type structures. This method of construction can significantly reduce the self-weight of the structure, and it will inspire the use of sustainable materials in the construction of efficient structures.« less
  2. Digital image correlation (DIC) is a non-destructive and non-contact optical technique to measure deformation and strain of materials. The method is based on optically tracking the displacements of a speckle pattern created on the material surface. In the case of soft tissues such as mouse aorta, there are several advantages to using DIC since it can provide local, rather than global, deformations and it is suitable for large strain measurements, typical of soft tissues taken to failure [1] [2]. For the optimal use of DIC, several requirements should be met for speckle patterning: 1) randomness, 2) high contrast, 3) appropriate size of speckle in the field of view (3-5 pixels), and 4) firm attachment of speckle to specimen during deformation. In previous DIC studies of soft tissues, the methods employed to create a speckle pattern include the use of an airbrush to spray dye or paint on the specimen, or coating the sample with toner powder. However, biological samples must be partially dehydrated before applying paint which may affect the mechanical properties of the specimen, and toner powder is too hydrophobic to adhere well on specimens when submerged in aqueous solution during mechanical testing. In addition, it is difficult tomore »evenly distribute paint or toner powder on the surface of a hydrated biological specimen [2]. Therefore, a novel method utilizing colloidal gold particles to create a speckle pattern on mouse aorta is proposed in this work.« less
  3. Brillouin scattering-based distributed fiber optic sensing (Brillouin-DFOS) technology is widely used in health monitoring of large-scale structures with the aim to provide early warning of structural degradation and timely maintenance and renewal. Material cracking is one of the key mechanisms that contribute to structural failure. However, the conventional strain measurement using the Brillouin-DFOS system has a decimeter-order spatial resolution, and therefore it is difficult to measure the highly localized strain generated by a sub-millimeter crack. In this study, a new crack analysis method based on Brillouin scattering spectrum (BSS) data is proposed to overcome this spatial resolution-induced measurement limitation. By taking the derivative of the BSS data and tracking their local minimums, the method can extract the maximum strain within the spatial resolution around the measurement points. By comparing the variation of the maximum strain within the spatial resolution around different measurement points along the fiber, cracks can be located. The performance of the method is demonstrated and verified by locating and quantifying a small gap created between two wood boards when one of the wood boards is pushed away from the other. The test result verifies the accuracy of the crack strain quantification of the method and proves itsmore »capability to measure a sub-millimeter crack. The method is also applied to a thin bonded concrete overlay of asphalt pavement field experiment, in which the growth of a transverse joint penetrating through the concrete–asphalt interface was monitored. The method successfully locates the position, traces the strain variation, and estimates the width of a crack less than [Formula: see text] wide using a Brillouin-DFOS system with [Formula: see text] spatial resolution.« less
  4. Continuous bending under tension (CBT) is known to achieve elongation-to-failure well above that achieved under a conventional uniaxial simple tension (ST) strain path. However, the detailed mechanism for supplying this increased ductility has not been fully understood. It is clear that the necking that occurs in a typical ST specimen is avoided by constantly moving the region of plastic deformation during the CBT process. The volume of material in which the flow stress is greatest is limited to a moving line where the rollers contact the sheet and superimpose bending stress on the applied tensile load. Hence the condition of a large volume of material experiencing stress greater than the material flow stress, leading to strain localization during ST, is avoided. However, the magnitude of the contribution of this phenomenon to the overall increase in elongation is unclear. In the current set of experiments, an elongation to fracture (ETF) of 4.56x and 3.7x higher than ST was achieved by fine-tuning CBT forming parameters for Q&P 1180 and TBF 1180, respectively. A comparison of maximum local strains near the final point of fracture in ST and CBT sheets via digital image correlation revealed that avoidance of localization of plastic strain duringmore »CBT accounts for less than half of the increased elongation in the CBT specimens for two steels containing different amounts of retained austenite (RA). Geometrically necessary dislocation evolution is monitored using high-resolution EBSD (HREBSD) for both strain paths, indicating a lower hardening rate in the CBT samples in the bulk of the sheet, potentially relating to the cyclical nature of the stress in the outer layers of the sheet. Interestingly, the GND evolution in the center of the sheet, which does not experience the same amplitude of cyclic stress, follows the ST behavior more closely than the sheet edges. This appears to contribute to a precipitous drop in residual ductility for the specimens that are pulled in ST after partial CBT processing. The rate of transformation of RA is also tracked in the steels, with a significantly lower rate of transformation during CBT, compared to ST. This suggests that a slower transformation rate achieved under CBT also contributed to higher strain-to-failure levels.« less
  5. Phase field theory for fracture is developed at large strains with an emphasis on a correct introduction of surface stresses. This is achieved by multiplying the cohesion and gradient energies by the local ratio of the crack surface areas in the deformed and undeformed configurations and with the gradient energy in terms of the gradient of the order parameter in the reference configuration. This results in an expression for the surface stresses which is consistent with the sharp surface approach. Namely, the structural part of the Cauchy surface stress represents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the surface energy. The surface stresses are a result of the geometric nonlinearities, even when strains are infinitesimal. They make multiple contributions to the Ginzburg-Landau equation for damage evolution, both in the deformed and undeformed configurations. Important connections between material parameters are obtained using an analytical solution for two separating surfaces, as well as an analysis of the stress-strain curves for homogeneous tension for different degradation and interpolation functions. A complete system of equations is presented in the undeformed and deformed configurations. All the phase field parameters are obtained utilizing the existing first principle simulationsmore »for the uniaxial tension of Si crystal in the [100] and [111] directions.« less