skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Micromechanical origins of remarkable elongation-to-fracture in AHSS TRIP steels via continuous bending under tension
Continuous bending under tension (CBT) is known to achieve elongation-to-failure well above that achieved under a conventional uniaxial simple tension (ST) strain path. However, the detailed mechanism for supplying this increased ductility has not been fully understood. It is clear that the necking that occurs in a typical ST specimen is avoided by constantly moving the region of plastic deformation during the CBT process. The volume of material in which the flow stress is greatest is limited to a moving line where the rollers contact the sheet and superimpose bending stress on the applied tensile load. Hence the condition of a large volume of material experiencing stress greater than the material flow stress, leading to strain localization during ST, is avoided. However, the magnitude of the contribution of this phenomenon to the overall increase in elongation is unclear. In the current set of experiments, an elongation to fracture (ETF) of 4.56x and 3.7x higher than ST was achieved by fine-tuning CBT forming parameters for Q&P 1180 and TBF 1180, respectively. A comparison of maximum local strains near the final point of fracture in ST and CBT sheets via digital image correlation revealed that avoidance of localization of plastic strain during CBT accounts for less than half of the increased elongation in the CBT specimens for two steels containing different amounts of retained austenite (RA). Geometrically necessary dislocation evolution is monitored using high-resolution EBSD (HREBSD) for both strain paths, indicating a lower hardening rate in the CBT samples in the bulk of the sheet, potentially relating to the cyclical nature of the stress in the outer layers of the sheet. Interestingly, the GND evolution in the center of the sheet, which does not experience the same amplitude of cyclic stress, follows the ST behavior more closely than the sheet edges. This appears to contribute to a precipitous drop in residual ductility for the specimens that are pulled in ST after partial CBT processing. The rate of transformation of RA is also tracked in the steels, with a significantly lower rate of transformation during CBT, compared to ST. This suggests that a slower transformation rate achieved under CBT also contributed to higher strain-to-failure levels.  more » « less
Award ID(s):
1926662
PAR ID:
10296622
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials science engineering
Volume:
825
ISSN:
0921-5093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. TBF 1180 steel was plastically deformed under different strain paths in order to study both the ductility and RA transformation rates. Specimens were prepared from a 1 mm thick sheet and then tested incrementally under uniaxial tension, plane-strain tension, and biaxial tension. The retained austenite (RA) levels were measured, as a function of the plastic strain, using electron backscatter diffraction (EBSD). The plane-strain tension specimens had the fastest rate of RA transformation as a function of strain, followed by uniaxial tension, and then biaxial tension. The forming limits were measured for each strain path, yielding major limit strains of 0.12 under uniaxial tension, 0.09 under plane-strain tension, and 0.16 under biaxial tension. These results were compared to prior work on a 1.2 mm Q&P 1180 steel sheet, which had a similar yield and ultimate tensile strength, but exhibited slightly greater forming limits than the TBF material. The visual inspection of the micrographs appeared to show an equiaxed RA morphology in the Q&P 1180 steel and a mixture of equiaxed and lamellar RA grains in the TBF 1180 steel. However, the statistics generated by EBSD revealed that both alloys had RA grains with essentially the same aspect ratios. The average RA grain size in the Q&P alloy was found to be about three times larger than that of the TBF alloy. As such, the small but consistent formability advantage exhibited by the Q&P 1180 alloy along all three strain paths can be attributed to its larger average RA grain size, where larger RA grain sizes correlated with a more gradual transformation rate. 
    more » « less
  2. Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades. 
    more » « less
  3. Abstract Superposing pre-stress on a SS304 sheet metal blank in biaxial tension and performing a single point incremental forming operation on the stretched blank is investigated experimentally. By applying a pre-stress to the sheet metal blank prior to incremental forming, the resulting microstructural change can be affected to obtain functionally graded materials according to the intended application. In austenitic stainless steels, this variation of the stress states alters the phase transformation, specifically the martensitic transformation kinetics, by influencing key process parameters, such as process force, temperature, and equivalent plastic strain. The phase transformation in truncated square pyramids is measured using magnetic induction. These measurements validate the effectiveness of the stress superposition method for achieving the desired mechanical properties based on altering the final microstructure of a simple geometry. 
    more » « less
  4. This study primarily aims to develop a robust modelling approach to capture complex material behavior of CP-Ti, appeared by high anisotropy, differential hardening due to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, using artificial neural networks (ANNs). Plasticity is characterized by uniaxial tension and in-plane biaxial tension tests at temperatures of 0°C and 20°C with strain rates of 0.001 /s and 0.01 /s, and the results are used to calibrate the non-quadratic anisotropic Yld2000-3d yield function with respect to the plastic work. In order to predict the intricate plastic deformation with the temperature and strain rate effects, two distinct ANN models are developed; one is to capture the strain hardening behavior and the other to predict the anisotropic parameters in the chosen yield function. The developed ANN models predict an unseen dataset well, which is intermediate testing conditions at a temperature of 10°C and strain rate of 0.005 /s. The ANN models, being computationally stable and adhering to conventional constitutive equations, are implemented into a user material subroutine for the ductile fracture characterization of CP-Ti sheet using the hybrid experimental-numerical analysis. The favorable agreement between experimental data and numerical predictions, particularly using the ANN models with evolving anisotropic material parameters for the Yld2000-3d yield function, underscores the significance of differential hardening effect on the ductile fracture behavior and highlights the capabilities of ANN models to capture the complex plastic behavior of CP-Ti. The key parameters including stress triaxiality, Lode angle parameter, and equivalent plastic strain at the fracture location are extracted from the simulations, enabling the calibration of ductile fracture models, namely Johnson-Cook, Hosford-Coulomb, and Lou-2014, and construction of fracture envelopes. 
    more » « less