Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala) 4 . Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala) 4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor–acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a “scorpion-shaped” molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH … O=C–NH … O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor–acceptor assemblies linked by long flexible bridges as well as insightsmore »
Ultrafast photoinduced energy and charge transfer: concluding remarks
The ability to characterize and control the energy and charge transfer events triggered by the photoexcitation of molecules and materials is of fundamental importance to many fields, including the sustainable capture and conversion of solar energy. This article summarizes the papers that were presented and discussed at the recent Faraday discussion meeting on ultrafast photoinduced energy and charge transfer. Ultrafast laser spectroscopy and theory were at the center of discussions on photoinduced phenomena in biological and nanoscale systems of interacting absorbers. Many of the questions that motivate this field of science have occupied scientists for many decades, as a look back to a Faraday discussion meeting that took place 60 years earlier reveals.
- Award ID(s):
- 1800471
- Publication Date:
- NSF-PAR ID:
- 10109958
- Journal Name:
- Faraday Discussions
- Volume:
- 216
- Page Range or eLocation-ID:
- 564 to 573
- ISSN:
- 1359-6640
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Owing to their porous structure and tunable framework, zeolitic imidazolate frameworks (ZIFs) have garnered considerable attention as promising photocatalytic materials. However, little is known regarding their photophysical properties. In this work, we report the photoinduced charge separation dynamics in a ZIF-67 thin film through interfacial electron transfer (ET) to methylene blue (MB + ) via ultrafast transient absorption spectroscopy. We show that the ET process occurs through two distinct pathways, including an ultrafast (<200 fs) process from the [Co II (mim) 2 ] units located on the surface of ZIF-67 film that are directly in contact with MB + and a relatively slower ET process with a 101.4 ps time constant from the units in the bulk of the film that were isolated from MB + by the surface units. This first direct evidence of the ET process from ZIF-67 to electron acceptor strongly suggests that ZIF materials may be used as intrinsic photocatalytic materials rather than inert hosts.
-
Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS 2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS 2 exciton leads to hole transfer from the MoS 2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS 2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.
-
Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of themore »
-
We demonstrate heterodyne detected transient vibrational sum frequency generation (VSFG) spectroscopy and use it to probe transient electric fields caused by interfacial charge transfer at organic semiconductor and metal interfaces. The static and transient VSFG spectra are composed of both non-resonant and molecular resonant responses. To further disentangle both contributions, we apply phase rotation to make the imaginary part of the spectra be purely molecular responses and the real part of the spectra be dominated by non-resonant signals. By separating non-resonant and molecular signals, we can track their responses to the transient electric-fields at interfaces independently. This technique combined with the phase sensitivity gained by heterodyne detection allows us to successfully identify three types of photoinduced dynamics at organic semiconductor/metal interfaces: coherent artifacts, optical excitations that do not lead to charge transfer, and direct charge transfers. The ability to separately follow the influence of built-in electric fields to interfacial molecules, regardless of strong nonresonant signals, will enable tracking of ultrafast charge dynamics with molecular specificities on molecular optoelectronics, photovoltaics, and solar materials.