RationaleThe electrostatic linear ion trap (ELIT) can be operated as a multi‐reflection time‐of‐flight (MR‐TOF) or Fourier transform (FT) mass analyzer. It has been shown to be capable of performing high‐resolution mass analysis and high‐resolution ion isolations. Although it has been used in charge‐detection mass spectrometry (CDMS), it has not been widely used as a conventional mass spectrometer for ensemble measurements of ions, or for tandem mass spectrometer. The advantages of tandem mass spectrometer with high‐resolution ion isolations in the ELIT have thus not been fully exploited. MethodsA homebuilt ELIT was modified with BaF2viewports to facilitate transmission of a laser beam at the turnaround point of the second ion mirror in the ELIT. Fragmentation that occurs at the turnaround point of these ion mirrors should result in minimal energy partitioning due to the low kinetic energy of ions at these points. The laser was allowed to irradiate ions for a period of many oscillations in the ELIT. ResultsDue to the low energy absorption of gas‐phase ions during each oscillation in the ELIT, fragmentation was found to occur over a range of oscillations in the ELIT generating a homogeneous ion beam. A mirror‐switching pulse is shown to create time‐varying perturbations in this beam that oscillate at the fragment ion characteristic frequencies and generate a time‐domain signal. This was found to recover FT signal for protonated pYGGFL and pSGGFL precursor ions. ConclusionsFragmentation at the turnaround point of an ELIT by continuous‐wave infrared multiphoton dissociation (cw‐IRMPD) is demonstrated. In cases where laser power absorption is low and fragmentation occurs over many laps, a mirror‐switching pulse may be used to recover varying time‐domain signal. The combination of laser activation at the turnaround points and mirror‐switching isolation allows for tandem MS in the ELIT.
more »
« less
This content will become publicly available on April 1, 2026
Ion emission from niobium nanosecond laser plasma
A niobium laser multicharged ion source was developed using laser ablation with 10-ns, 1064-nm pulses and a laser fluence of 10–83 Jcm-2. Three distinct groups of Nb ions were detected: ultrafast, fast, and thermal. The ions were accelerated and allowed to drift in a transport line containing an electrostatic ion energy analyzer, a retarding field analyzer, and a Faraday cup. Analysis of the ion energy and charge (z) showed that each group of ions experienced different acceleration potentials during plasma expansion. Time-of-flight (TOF) signal of the thermal ions showed overlap of the signals from Nb1+ and Nb2+. For the fast ion group, z up to Nb7+ was observed and the ion acceleration potential during plasma expansion increased with z, over the charge states from Nb1+ to Nb7+. The TOF signal indicated that the ultrafast ions were composed of higher-charge ions.
more »
« less
- Award ID(s):
- 2214998
- PAR ID:
- 10626551
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Vacuum
- Volume:
- 234
- Issue:
- C
- ISSN:
- 0042-207X
- Page Range / eLocation ID:
- 114048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heavy ion signatures of coronal mass ejections (CMEs) indicate that rapid and strong heating takes place during the eruption and early stages of propagation. However, the nature of the heating that produces the highly ionized charge states often observed in situ is not fully constrained. An MHD simulation of the Bastille Day CME serves as a test bed to examine the origin and conditions of the formation of heavy ions evolving within the CME in connection with those observed during its passage at L1. In particular, we investigate the bimodal nature of the Fe charge state distribution, which is a quintessential heavy ion signature of CME substructure, as well as the source of the highly ionized plasma. We find that the main heating experienced by the tracked plasma structures linked to the ion signatures examined is due to field-aligned thermal conduction via shocked plasma at the CME front. Moreover, the bimodal Fe distributions can be generated through significant heating and rapid cooling of prominence material. However, although significant heating was achieved, the highest ionization stages of Fe ions observed in situ were not reproduced. In addition, the carbon and oxygen charge state distributions were not well replicated owing to anomalous heavy ion dropouts observed throughout the ejecta. Overall, the results indicate that additional ionization is needed to match observation. An important driver of ionization could come from suprathermal electrons, such as those produced via Fermi acceleration during reconnection, suggesting that the process is critical to the development and extended heating of extreme CME eruptions, like the Bastille Day CME.more » « less
-
Abstract The application high intensity ultrafast lasers to compact plasma-based electron accelerators has recently been an extremely active area of research. Here, for the first time, we show experimentally and theoretically that carefully sculpting an intense ultrafast pulse in the spatio-temporal domain allows ponderomotive pressure to be used for direct acceleration of electron bunches from rest to relativistic energies. With subluminal group velocity and above-threshold intensity, a laser pulse can capture and accelerate electrons, pushing on them like a snowplow. Acceleration of electrons from rest requires a substantial reduction of group velocity. In this demonstration experiment, we achieve a group velocity of ∼0.6c in a tilted pulse by focusing the output of a novel asymmetric pulse compressor we developed for the petawatt-class ALEPH system at Colorado State University. This direct laser-electron approach opens a route towards exploiting optical spatio-temporal control techniques to sculpt electron beams with desired properties such as narrow energy and angular distributions. The tilted-pulse snowplow technique can be scaled from small-scale to facility-scale amplifiers to produce short electron bunches in the 10 keV−10 MeV range for applications including ultrafast electron diffraction and efficient injection into laser wakefield accelerators for acceleration beyond the GeV level.more » « less
-
Abstract In an atmospheric DC glow discharge with liquid anode, the plasma attachment under certain conditions self-organize into coherent patterns at the anode. Optical emission spectroscopy revealed that attachment emission consists primarily of the second positive system of nitrogen N2(C-B) whose excitation energy is low and sensitive to the change of electron energy distribution. Besides the electrons, negative ions can also accumulate in the anode sheath and affect the local space charge. It has been conjectured that these negative ions play a role in pattern formation at the anode surface. In this work, the role of oxygen negative ions was explored. It was found that the establishment of anode patterns requires at least a 7 % volume fraction of oxygen in the ambient gas. Results showed that at least in this work, O2- is the dominant negative ion species and has a density ~10^13 cm^-3. While the presence of oxygen appears crucial to pattern formation, this study indicated that the mere presence of the negative ions itself was not sufficient for pattern formation, suggesting a more complex mechanism involving electronegative species must be present. In fact, it was found that even when as many as 67 % of negative ions in the plasma were detached, no obvious geometry changes were observed in the self-organized pattern.more » « less
-
A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.more » « less
An official website of the United States government
