skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tension Pistons: Amplifying Piston Force Using Fluid-Induced Tension in Flexible Materials
Pistons are ubiquitous devices used for fluid-mechanical energy conversion. However, despite this ubiquity and centuries of development, the forces and motions produced by conventional rigid pistons are limited by their design. The use of flexible materials and structures opens a door to the design of a piston with unconventional features. In this study, an architecture for pistons that utilizes a combination of flexible membrane materials and compressible rigid structures is proposed. In contrast to conventional pistons, the fluid- pressure-induced tension forces in the flexible membrane play a primary role in the system, rather than compressive forces on the internal surfaces of the piston. The compressive skeletal structures offer the opportunity for the production of tunable forces and motions in the “tension piston” system. The experimental results indicate that the tension piston concept is able to produce substantially greater force (more than three times), higher power, and higher energy efficiency (more than 40% improvement at low pressures) compared to a conventional piston, and these features enable myriad potential applications for the tension piston as a drop-in replacement for existing pistons.  more » « less
Award ID(s):
1830901
PAR ID:
10110041
Author(s) / Creator(s):
Date Published:
Journal Name:
Advanced functional materials
ISSN:
1616-3028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift response amplitude increases abruptly and is followed by a sharp decrease. This behaviour reveals a frequency region, controlled by the membrane tension coefficient, for which membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in unsteady flow conditions. 
    more » « less
  2. A colloidal motor driven by surface tension forces is theoretically designed by encapsulating an active Janus particle in a liquid drop which is immiscible in the suspending medium. The Janus particle produces an asymmetric flux of a solute species which induces surface tension gradients along the liquid–liquid interface between the drop and the surrounding fluid. The resulting Marangoni forces at the interface propel the compound drop/Janus particle system. The propulsion speeds of the motor are evaluated for a range of relative sizes and positions of the drop and the particle and across a range of transport properties of the drop and the suspending medium. It is demonstrated that the proposed design can produce higher propulsion velocities than the traditional Janus-particle-based colloidal motors propelled by neutral diffusiophoresis. 
    more » « less
  3. Entropic pressure, a longstanding topic of interest in biophysics and biomechanics, has been studied for over four decades. Similar to an ideal gas, fluctuating surfaces can generate entropic pressure through thermally driven motions. These thermal fluctuations impact a wide range of biological activities, including but not limited to vesicle fusion, cell adhesion, exocytocis, and endocytocis among many others. It has been proposed (and validated) by many researchers that the entropic pressure near a fluctuating confined fluid membrane without surface tension scales as p∝1/d3, where d is the confining distance, and this power law is size independent. In this article, we show that entropic pressure near a fluctuating fluid membrane could be strongly affected by the membrane’s size and surface tension. We show that while for membranes of size L=1μm and larger, the pressure is size independent, for smaller membranes, the pressure does indeed depend on the membrane’s size. Our findings also shows that the surface tension changes this scaling law and at larger distance makes the pressure decay exponentially. Our work provides insights into how surface tension enhances biological vesicles fusion by suppressing membrane fluctuations, and consequently, the repulsive entropic force, and impacts biomembranes interactions with external objects at the early stage of approaching. 
    more » « less
  4. Structures with deployable and compliant mechanisms are new to the domain of underground geotechnical systems. An anchor with rotationally deploying compliant thin-wall elements has been developed. This paper presents variations of this anchor that are targeted to increase the surface area associated with the anchor. This increased surface area correlates to higher skin friction to better resist tensile forces. The number and sizing of the deployable components, called awns, are investigated. The work presented here includes methods to change the deployment behavior of the awns by changing the shape of the awns and by using functionally graded materials for increased resistance when the anchor is subjected to uplift forces. Test members were fabricated from a combination of flexible and rigid polymers via additive manufacturing. Experimental testing included anchor deployment tests and awn tension tests. For deployment tests, torque was applied to an anchor placed in clear sand. Awn tension tests provided additional information about the deformation of functionally graded awns through isolated testing of the awns. The presented design and experimental methodologies give insights into the behavior of small-scale deployable anchors. 
    more » « less
  5. Soft robots employ flexible and compliant materials to perform adaptive tasks and navigate uncertain environments. However, soft robots are often unable to achieve forces and precision on the order of rigid-bodied robots. In this paper, we propose a new class of mobile soft robots that can reversibly transition between compliant and stiff states without reconfiguration. The robot can passively conform or actively control its shape, stiffen in its current configuration to function as a rigid-bodied robot, then return to its flexible form. The robotic structure consists of passive granular material surrounded by an active membrane. The membrane is composed of interconnected robotic sub-units that can control the packing density of the granular material and exploit jamming behaviors by varying the length of the interconnecting cables. Each robotic sub-unit uses a differential drive system to achieve locomotion and self-reconfigurability. We present the robot design and perform a set of locomotion and object manipulation experiments to characterize the robot's performance in soft and rigid states. We also introduce a simulation framework in which we model the jamming soft robot design and study the scalability of this class of robots. The proposed concept demonstrates the properties of both soft and rigid robots, and has the potential to bridge the gap between the two 
    more » « less