skip to main content


Title: Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface
We consider the Euler equations for the potential flow of an ideal incompressible fluid of infinite depth with a free surface in two-dimensional geometry. Both gravity and surface tension forces are taken into account. A time-dependent conformal mapping is used which maps the lower complex half-plane of the auxiliary complex variable $w$ into the fluid’s area, with the real line of $w$ mapped into the free fluid’s surface. We reformulate the exact Eulerian dynamics through a non-canonical non-local Hamiltonian structure for a pair of the Hamiltonian variables. These two variables are the imaginary part of the conformal map and the fluid’s velocity potential, both evaluated at the fluid’s free surface. The corresponding Poisson bracket is non-degenerate, i.e. it does not have any Casimir invariant. Any two functionals of the conformal mapping commute with respect to the Poisson bracket. The new Hamiltonian structure is a generalization of the canonical Hamiltonian structure of Zakharov ( J. Appl. Mech. Tech. Phys. , vol. 9(2), 1968, pp. 190–194) which is valid only for solutions for which the natural surface parametrization is single-valued, i.e. each value of the horizontal coordinate corresponds only to a single point on the free surface. In contrast, the new non-canonical Hamiltonian equations are valid for arbitrary nonlinear solutions (including multiple-valued natural surface parametrization) and are equivalent to the Euler equations. We also consider a generalized hydrodynamics with the additional physical terms in the Hamiltonian beyond the Euler equations. In that case we identify powerful reductions that allow one to find general classes of particular solutions.  more » « less
Award ID(s):
1814619 1715323
NSF-PAR ID:
10110070
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
869
ISSN:
0022-1120
Page Range / eLocation ID:
526 to 552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We address the problem of the potential motion of an ideal incompressible fluid with a free surface and infinite depth in a two-dimensional geometry. We admit the presence of gravity forces and surface tension. A time-dependent conformal mapping $z(w,t)$ of the lower complex half-plane of the variable $w$ into the area filled with fluid is performed with the real line of $w$ mapped into the free fluid’s surface. We study the dynamics of singularities of both $z(w,t)$ and the complex fluid potential $\unicode[STIX]{x1D6F1}(w,t)$ in the upper complex half-plane of $w$ . We show the existence of solutions with an arbitrary finite number $N$ of complex poles in $z_{w}(w,t)$ and $\unicode[STIX]{x1D6F1}_{w}(w,t)$ which are the derivatives of $z(w,t)$ and $\unicode[STIX]{x1D6F1}(w,t)$ over $w$ . We stress that these solutions are not purely rational because they generally have branch points at other positions of the upper complex half-plane. The orders of poles can be arbitrary for zero surface tension while all orders are even for non-zero surface tension. We find that the residues of $z_{w}(w,t)$ at these $N$ points are new, previously unknown, constants of motion, see also Zakharov & Dyachenko (2012, authors’ unpublished observations, arXiv:1206.2046 ) for the preliminary results. All these constants of motion commute with each other in the sense of the underlying Hamiltonian dynamics. In the absence of both gravity and surface tension, the residues of $\unicode[STIX]{x1D6F1}_{w}(w,t)$ are also the constants of motion while non-zero gravity $g$ ensures a trivial linear dependence of these residues on time. A Laurent series expansion of both $z_{w}(w,t)$ and $\unicode[STIX]{x1D6F1}_{w}(w,t)$ at each poles position reveals the existence of additional integrals of motion for poles of the second order. If all poles are simple then the number of independent real integrals of motion is $4N$ for zero gravity and $4N-1$ for non-zero gravity. For the second-order poles we found $6N$ motion integrals for zero gravity and $6N-1$ for non-zero gravity. We suggest that the existence of these non-trivial constants of motion provides an argument in support of the conjecture of complete integrability of free surface hydrodynamics in deep water. Analytical results are solidly supported by high precision numerics. 
    more » « less
  2. null (Ed.)
    A potential motion of ideal incompressible fluid with a free surface and infinite depth is considered in two-dimensional geometry. A time-dependent conformal mapping of the lower complex half-plane of the auxiliary complex variable w into the area filled with fluid is performed with the real line of w mapped into the free fluid’s surface. The fluid dynamics can be fully characterized by the motion of the complex singularities in the analytical continuation of both the conformal mapping and the complex velocity. We consider the short branch cut approximation of the dynamics with the small parameter being the ratio of the length of the branch cut to the distance between its centre and the real line of w . We found that the fluid dynamics in that approximation is reduced to the complex Hopf equation for the complex velocity coupled with the complex transport equation for the conformal mapping. These equations are fully integrable by characteristics producing the infinite family of solutions, including moving square root branch points and poles. These solutions involve practical initial conditions resulting in jets and overturning waves. The solutions are compared with the simulations of the fully nonlinear Eulerian dynamics giving excellent agreement even when the small parameter approaches about one. 
    more » « less
  3. Abstract

    The equation for a traveling wave on the boundary of a two‐dimensional droplet of an ideal fluid is derived by using the conformal variables technique for free surface waves. The free surface is subject only to the force of surface tension and the fluid flow is assumed to be potential. We use the canonical Hamiltonian variables discovered and map the lower complex plane to the interior of a fluid droplet conformally. The equations in this form have been originally discovered for infinitely deep water and later adapted to a bounded fluid domain.The new class of solutions satisfies a pseudodifferential equation similar to the Babenko equation for the Stokes wave. We illustrate with numerical solutions of the time‐dependent equations and observe the linear limit of traveling waves in this geometry.

     
    more » « less
  4. We derive a simple Poisson structure in the space of Fourier modes for the vorticity formulation of the Euler equations on a three-dimensional periodic domain. This allows us to analyse the structure of the Euler equations using a Hamiltonian framework. The Poisson structure is valid on the divergence free subspace only, and we show that using a projection operator it can be extended to be valid in the full space. We then restrict the simple Poisson structure to the divergence-free subspace on which the dynamics of the Euler equations take place, reducing the size of the system of ODEs by a third. The projected and the restricted Poisson structures are shown to have the helicity as a Casimir invariant. 
We conclude by showing that periodic shear flows in three dimensions are equilibria that correspond to singular points of the projected Poisson structure, and hence that the usual approach to study their nonlinear stability through the Energy-Casimir method fails. 
    more » « less
  5. The ideal Chew–Goldberger–Low (CGL) plasma equations, including the double adiabatic conservation laws for the parallel ( $p_\parallel$ ) and perpendicular pressure ( $p_\perp$ ), are investigated using a Lagrangian variational principle. An Euler–Poincaré variational principle is developed and the non-canonical Poisson bracket is obtained, in which the non-canonical variables consist of the mass flux ${\boldsymbol {M}}$ , the density $\rho$ , the entropy variable $\sigma =\rho S$ and the magnetic induction ${\boldsymbol {B}}$ . Conservation laws of the CGL plasma equations are derived via Noether's theorem. The Galilean group leads to conservation of energy, momentum, centre of mass and angular momentum. Cross-helicity conservation arises from a fluid relabelling symmetry, and is local or non-local depending on whether the gradient of $S$ is perpendicular to ${\boldsymbol {B}}$ or otherwise. The point Lie symmetries of the CGL system are shown to comprise the Galilean transformations and scalings. 
    more » « less