skip to main content

Title: MFBO-SSM: Multi-Fidelity Bayesian Optimization for Fast Inference in State-Space Models
Nonlinear state-space models are ubiquitous in modeling real-world dynamical systems. Sequential Monte Carlo (SMC) techniques, also known as particle methods, are a well-known class of parameter estimation methods for this general class of state-space models. Existing SMC-based techniques rely on excessive sampling of the parameter space, which makes their computation intractable for large systems or tall data sets. Bayesian optimization techniques have been used for fast inference in state-space models with intractable likelihoods. These techniques aim to find the maximum of the likelihood function by sequential sampling of the parameter space through a single SMC approximator. Various SMC approximators with different fidelities and computational costs are often available for sample- based likelihood approximation. In this paper, we propose a multi-fidelity Bayesian optimization algorithm for the inference of general nonlinear state-space models (MFBO-SSM), which enables simultaneous sequential selection of parameters and approximators. The accuracy and speed of the algorithm are demonstrated by numerical experiments using synthetic gene expression data from a gene regulatory network model and real data from the VIX stock price index.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the ... AAAI Conference on Artificial Intelligence
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate approximate Bayesian inference techniques for nonlinear systems described by ordinary differential equation (ODE) models. In particular, the approximations will be based on set-valued reachability analysis approaches, yielding approximate models for the posterior distribution. Nonlinear ODEs are widely used to mathematically describe physical and biological models. However, these models are often described by parameters that are not directly measurable and have an impact on the system behaviors. Often, noisy measurement data combined with physical/biological intuition serve as the means for finding appropriate values of these parameters.Our approach operates under a Bayesian framework, given prior distribution over the parameter space and noisy observations under a known sampling distribution. We explore subsets of the space of model parameters, computing bounds on the likelihood for each subset. This is performed using nonlinear set-valued reachability analysis that is made faster by means of linearization around a reference trajectory. The tiling of the parameter space can be adaptively refined to make bounds on the likelihood tighter. We evaluate our approach on a variety of nonlinear benchmarks and compare our results with Markov Chain Monte Carlo and Sequential Monte Carlo approaches.

  2. We propose a new algorithm for inference of protein-protein interaction (PPI) networks from noisy time series of Liquid- Chromatography Mass-Spectrometry (LC-MS) proteomic expression data based on Approximate Bayesian Computation - Sequential Monte Carlo sampling (ABC-SMC). The algorithm is an extension of our previous framework PALLAS. The proposed algorithm can be easily modified to handle other complex models of expression data, such as LC-MS data, for which the likelihood function is intractable. Results based on synthetic time series of cytokine LC-MS measurements cor- responding to a prototype immunomic network demonstrate that our algorithm is capable of inferring the network topology accurately.
  3. de Visser, J. Arjan (Ed.)
    The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these 2 parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based likelihood–free inference approaches. We tested the suitability of 2 evolutionary models: a standard Wright–Fisher model and a chemostat model. We evaluated 2 likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models, we show thatmore »NPE has several advantages over ABC-SMC and that a Wright–Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10 −4.7 to 10 −4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-based estimates using 2 distinct experimental methods—barcode lineage tracking and pairwise fitness assays—which provide independent confirmation of the accuracy of our approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the utility of novel neural network–based likelihood–free inference methods for inferring the rates and effects of evolutionary processes from empirical data with possible applications ranging from tumor to viral evolution.« less
  4. Performing numerical integration when the integrand itself cannot be evaluated point-wise is a challenging task that arises in statistical analysis, notably in Bayesian inference for models with intractable likelihood functions. Markov chain Monte Carlo (MCMC) algorithms have been proposed for this setting, such as the pseudo-marginal method for latent variable models and the exchange algorithm for a class of undirected graphical models. As with any MCMC algorithm, the resulting estimators are justified asymptotically in the limit of the number of iterations, but exhibit a bias for any fixed number of iterations due to the Markov chains starting outside of stationarity. This "burn-in" bias is known to complicate the use of parallel processors for MCMC computations. We show how to use coupling techniques to generate unbiased estimators in finite time, building on recent advances for generic MCMC algorithms. We establish the theoretical validity of some of these procedures by extending existing results to cover the case of polynomially ergodic Markov chains. The efficiency of the proposed estimators is compared with that of standard MCMC estimators, with theoretical arguments and numerical experiments including state space models and Ising models.
  5. A major goal in genomics is to properly capture the complex dynamical behaviors of gene regulatory networks (GRNs). This includes inferring the complex interactions between genes, which can be used for a wide range of genomics analyses, including diagnosis or prognosis of diseases and finding effective treatments for chronic diseases such as cancer. Boolean networks have emerged as a successful class of models for capturing the behavior of GRNs. In most practical settings, inference of GRNs should be achieved through limited and temporally sparse genomics data. A large number of genes in GRNs leads to a large possible topology candidate space, which often cannot be exhaustively searched due to the limitation in computational resources. This paper develops a scalable and efficient topology inference for GRNs using Bayesian optimization and kernel-based methods. Rather than an exhaustive search over possible topologies, the proposed method constructs a Gaussian Process (GP) with a topology-inspired kernel function to account for correlation in the likelihood function. Then, using the posterior distribution of the GP model, the Bayesian optimization efficiently searches for the topology with the highest likelihood value by optimally balancing between exploration and exploitation. The performance of the proposed method is demonstrated through comprehensive numericalmore »experiments using a well-known mammalian cell-cycle network.« less