- Award ID(s):
- 1718924
- NSF-PAR ID:
- 10110097
- Date Published:
- Journal Name:
- Proceedings of the ... AAAI Conference on Artificial Intelligence
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 7858-7865
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We propose a new algorithm for inference of protein-protein interaction (PPI) networks from noisy time series of Liquid- Chromatography Mass-Spectrometry (LC-MS) proteomic expression data based on Approximate Bayesian Computation - Sequential Monte Carlo sampling (ABC-SMC). The algorithm is an extension of our previous framework PALLAS. The proposed algorithm can be easily modified to handle other complex models of expression data, such as LC-MS data, for which the likelihood function is intractable. Results based on synthetic time series of cytokine LC-MS measurements cor- responding to a prototype immunomic network demonstrate that our algorithm is capable of inferring the network topology accurately.more » « less
-
We investigate approximate Bayesian inference techniques for nonlinear systems described by ordinary differential equation (ODE) models. In particular, the approximations will be based on set-valued reachability analysis approaches, yielding approximate models for the posterior distribution. Nonlinear ODEs are widely used to mathematically describe physical and biological models. However, these models are often described by parameters that are not directly measurable and have an impact on the system behaviors. Often, noisy measurement data combined with physical/biological intuition serve as the means for finding appropriate values of these parameters.Our approach operates under a Bayesian framework, given prior distribution over the parameter space and noisy observations under a known sampling distribution. We explore subsets of the space of model parameters, computing bounds on the likelihood for each subset. This is performed using nonlinear set-valued reachability analysis that is made faster by means of linearization around a reference trajectory. The tiling of the parameter space can be adaptively refined to make bounds on the likelihood tighter. We evaluate our approach on a variety of nonlinear benchmarks and compare our results with Markov Chain Monte Carlo and Sequential Monte Carlo approaches.
-
Abstract Modern macroeconometrics often relies on time series models for which it is time-consuming to evaluate the likelihood function. We demonstrate how Bayesian computations for such models can be drastically accelerated by reweighting and mutating posterior draws from an approximating model that allows for fast likelihood evaluations, into posterior draws from the model of interest, using a sequential Monte Carlo (SMC) algorithm. We apply the technique to the estimation of a vector autoregression with stochastic volatility and two nonlinear dynamic stochastic general equilibrium models. The runtime reductions we obtain range from 27 % to 88 %.more » « less
-
Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.more » « less
-
Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning scenarios and suitable for real-time applications.more » « less