skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robotics, Automation, and Control
Construction robots have drawn increased attention as a potential means of improving construction safety and productivity. However, it is still challenging to ensure safe human-robot collaboration on dynamic and unstructured construction workspaces. On construction sites, multiple entities dynamically collaborate with each other and the situational context between them evolves continually. Construction robots must therefore be equipped to visually understand the scene’s contexts (i.e., semantic relations to surrounding entities), thereby safely collaborating with humans, as a human vision system does. Toward this end, this study builds a unique deep neural network architecture and develops a construction-specialized model by experimenting multiple fine-tuning scenarios. Also, this study evaluates its performance on real construction operations data in order to examine its potential toward real-world applications. The results showed the promising performance of the tuned model: the recall@5 on training and validation dataset reached 92% and 67%, respectively. The proposed method, which supports construction co-robots with the holistic scene understanding, is expected to contribute to promoting safer human-robot collaboration in construction.  more » « less
Award ID(s):
1734266
PAR ID:
10110139
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Semantic Relation Detection Between Construction Entities to Support Safe Human-Robot Collaboration in Construction
Page Range / eLocation ID:
265 to 272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    One of the keys to the success of collaborative learning is balanced participation by all learners, but this does not always happen naturally. Pedagogical robots have the potential to facilitate balance. However, it remains unclear what participation balance robots should aim at; various metrics have been proposed, but it is still an open question whether we should balance human participation in human-human interactions (HHI) or human-robot interactions (HRI) and whether we should consider robots' participation in collaborative learning involving multiple humans and a robot. This paper examines collaborative learning between a pair of students and a teachable robot that acts as a peer tutee to answer the aforementioned question. Through an exploratory study, we hypothesize which balance metrics in the literature and which portions of dialogues (including vs. excluding robots' participation and human participation in HHI vs. HRI) will better predict learning as a group. We test the hypotheses with another study and replicate them with automatically obtained units of participation to simulate the information available to robots when they adaptively fix imbalances in real-time. Finally, we discuss recommendations on which metrics learning science researchers should choose when trying to understand how to facilitate collaboration. 
    more » « less
  2. null (Ed.)
    We analyze a human and multi-robot collaboration system and propose a method to optimally schedule the human attention when a human operator receives collaboration requests from multiple robots at the same time. We formulate the human attention scheduling problem as a binary optimization problem which aims to maximize the overall performance among all the robots, under the constraint that a human has limited attention capacity. We first present the optimal schedule for the human to determine when to collaborate with a robot if there is no contention occurring among robots' collaboration requests. For the moments when contentions occur, we present a contention-resolving Model Predictive Control (MPC) method to dynamically schedule the human attention and determine which robot the human should collaborate with first. The optimal schedule can then be determined using a sampling based approach. The effectiveness of the proposed method is validated through simulation that shows improvements. 
    more » « less
  3. null (Ed.)
    Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human-robot collaboration, but also enhance human safety in close proximity to robots. Although many prediction models have been proposed with various parameterization and identification approaches, some fundamental questions remain unclear: what is the necessary parameterization of a prediction model? Is online adaptation of models necessary? Can a prediction model help improve safety and efficiency during human-robot collaboration? These unaddressed questions result from the difficulty of quantitatively evaluating different prediction models in a closed-loop fashion in real human-robot interaction. This paper develops a method to evaluate the closed-loop performance of different prediction models. In particular, we compare models with different parameterizations and models with or without online parameter adaptation. Extensive experiments were conducted on a human-robot collaboration platform. The experimental results demonstrate that human motion prediction significantly enhance the collaboration efficiency and human safety. Adaptable prediction models that are parameterized by neural networks achieve better performance. 
    more » « less
  4. Robots are increasingly being employed for diverse applications where they must work and coexist with humans. The trust in human–robot collaboration (HRC) is a critical aspect of any shared-task performance for both the human and the robot. The study of a human-trusting robot has been investigated by numerous researchers. However, a robot-trusting human, which is also a significant issue in HRC, is seldom explored in the field of robotics. Motivated by this gap, we propose a novel trust-assist framework for human–robot co-carry tasks in this study. This framework allows the robot to determine a trust level for its human co-carry partner. The calculations of this trust level are based on human motions, past interactions between the human–robot pair, and the human’s current performance in the co-carry task. The trust level between the human and the robot is evaluated dynamically throughout the collaborative task, and this allows the trust to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Additionally, the proposed framework can enable the robot to generate and perform assisting movements to follow human-carrying motions and paces when the human is considered trustworthy in the co-carry task. The results of our experiments suggest that the robot effectively assists the human in real-world collaborative tasks through the proposed trust-assist framework. 
    more » « less
  5. The field of Human-Robot Collaboration (HRC) has seen a considerable amount of progress in recent years. Thanks in part to advances in control and perception algorithms, robots have started to work in increasingly unstructured environments, where they operate side by side with humans to achieve shared tasks. However, little progress has been made toward the development of systems that are truly effective in supporting the human, proactive in their collaboration, and that can autonomously take care of part of the task. In this work, we present a collaborative system capable of assisting a human worker despite limited manipulation capabilities, incomplete model of the task, and partial observability of the environment. Our framework leverages information from a high-level, hierarchical model that is shared between the human and robot and that enables transparent synchronization between the peers and mutual understanding of each other’s plan. More precisely, we firstly derive a partially observable Markov model from the high-level task representation; we then use an online Monte-Carlo solver to compute a short-horizon robot-executable plan. The resulting policy is capable of interactive replanning on-the-fly, dynamic error recovery, and identification of hidden user preferences. We demonstrate that the system is capable of robustly providing support to the human in a realistic furniture construction task. 
    more » « less