skip to main content


Title: What metrics of participation balance predict outcomes of collaborative learning with a robot?
One of the keys to the success of collaborative learning is balanced participation by all learners, but this does not always happen naturally. Pedagogical robots have the potential to facilitate balance. However, it remains unclear what participation balance robots should aim at; various metrics have been proposed, but it is still an open question whether we should balance human participation in human-human interactions (HHI) or human-robot interactions (HRI) and whether we should consider robots' participation in collaborative learning involving multiple humans and a robot. This paper examines collaborative learning between a pair of students and a teachable robot that acts as a peer tutee to answer the aforementioned question. Through an exploratory study, we hypothesize which balance metrics in the literature and which portions of dialogues (including vs. excluding robots' participation and human participation in HHI vs. HRI) will better predict learning as a group. We test the hypotheses with another study and replicate them with automatically obtained units of participation to simulate the information available to robots when they adaptively fix imbalances in real-time. Finally, we discuss recommendations on which metrics learning science researchers should choose when trying to understand how to facilitate collaboration.  more » « less
Award ID(s):
2024645
PAR ID:
10549432
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Benjamin, Paaßen; Carrie, Demmans Epp
Publisher / Repository:
International Educational Data Mining Society
Date Published:
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work in Human-Robot Interaction (HRI) has shown that robots can leverage implicit communicative signals from users to understand how they are being perceived during interactions. For example, these signals can be gaze patterns, facial expressions, or body motions that reflect internal human states. To facilitate future research in this direction, we contribute the REACT database, a collection of two datasets of human-robot interactions that display users’ natural reactions to robots during a collaborative game and a photography scenario. Further, we analyze the datasets to show that interaction history is an important factor that can influence human reactions to robots. As a result, we believe that future models for interpreting implicit feedback in HRI should explicitly account for this history. REACT opens up doors to this possibility in the future. 
    more » « less
  2. Abstract

    Effective interactions between humans and robots are vital to achieving shared tasks in collaborative processes. Robots can utilize diverse communication channels to interact with humans, such as hearing, speech, sight, touch, and learning. Our focus, amidst the various means of interactions between humans and robots, is on three emerging frontiers that significantly impact the future directions of human–robot interaction (HRI): (i) human–robot collaboration inspired by human–human collaboration, (ii) brain-computer interfaces, and (iii) emotional intelligent perception. First, we explore advanced techniques for human–robot collaboration, covering a range of methods from compliance and performance-based approaches to synergistic and learning-based strategies, including learning from demonstration, active learning, and learning from complex tasks. Then, we examine innovative uses of brain-computer interfaces for enhancing HRI, with a focus on applications in rehabilitation, communication, brain state and emotion recognition. Finally, we investigate the emotional intelligence in robotics, focusing on translating human emotions to robots via facial expressions, body gestures, and eye-tracking for fluid, natural interactions. Recent developments in these emerging frontiers and their impact on HRI were detailed and discussed. We highlight contemporary trends and emerging advancements in the field. Ultimately, this paper underscores the necessity of a multimodal approach in developing systems capable of adaptive behavior and effective interaction between humans and robots, thus offering a thorough understanding of the diverse modalities essential for maximizing the potential of HRI.

     
    more » « less
  3. null (Ed.)
    The study examines the relationship between the big five personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness) and robot likeability and successful HRI implementation in varying human-robot interaction (HRI) situations. Further, this research investigates the influence of human-like attributes in robots (a.k.a. robotic anthropomorphism) on the likeability of robots. The research found that robotic anthropomorphism positively influences the relationship between human personality variables (e.g., extraversion and agreeableness) and robot likeability in human interaction with social robots. Further, anthropomorphism positively influences extraversion and robot likeability during industrial robotic interactions with humans. Extraversion, agreeableness, and neuroticism were found to play a significant role. This research bridges the gap by providing an in-depth understanding of the big five human personality traits, robotic anthropomorphism, and robot likeability in social-collaborative robotics. 
    more » « less
  4. A wide range of studies in Human-Robot Interaction (HRI) has shown that robots can influence the social behavior of humans. This phenomenon is commonly explained by the Media Equation. Fundamental to this theory is the idea that when faced with technology (like robots), people perceive it as a social agent with thoughts and intentions similar to those of humans. This perception guides the interaction with the technology and its predicted impact. However, HRI studies have also reported examples in which the Media Equation has been violated, that is when people treat the influence of robots differently from the influence of humans. To address this gap, we propose a model of Robot Social Influence (RoSI) with two contributing factors. The first factor is a robot’s violation of a person’s expectations, whether the robot exceeds expectations or fails to meet expectations. The second factor is a person’s social belonging with the robot, whether the person belongs to the same group as the robot or a different group. These factors are primary predictors of robots’ social influence and commonly mediate the influence of other factors. We review HRI literature and show how RoSI can explain robots’ social influence in concrete HRI scenarios.

     
    more » « less
  5. Significant segments of the HRI literature rely on or promote the ability to reason about human identity characteristics, including age, gender, and cultural background. However, attempting to handle identity characteristics raises a number of critical ethical concerns, especially given the spatiotemporal dynamics of these characteristics. In this paper I question whether human identity characteristics can and should be represented, recognized, or reasoned about by robots, with special attention paid to the construct of race, due to its relative lack of consideration within the HRI community. As I will argue, while there are a number of well-warranted reasons why HRI researchers might want to enable robotic consideration of identity characteristics, these reasons are outweighed by a number of key ontological, perceptual, and deployment-oriented concerns. This argument raises troubling questions as to whether robots should even be able to understand or generate descriptions of people, and how they would do so while avoiding these ethical concerns. Finally, I conclude with a discussion of what this means for the HRI community, in terms of both algorithm and robot design, and speculate as to possible paths forward. 
    more » « less