skip to main content


Title: The emergence of vampire bat rabies in Uruguay within a historical context
Abstract Pathogen spillover from wildlife to humans or domestic animals requires a series of conditions to align with space and time. Comparing these conditions between times and locations where spillover does and does not occur presents opportunities to understand the factors that shape spillover risk. Bovine rabies transmitted by vampire bats was first confirmed in 1911 and has since been detected across the distribution of vampire bats. However, Uruguay is an exception. Uruguay was free of bovine rabies until 2007, despite high-cattle densities, the presence of vampire bats and a strong surveillance system. To explore why Uruguay was free of bovine rabies until recently, we review the historic literature and reconstruct the conditions that would allow rabies invasion into Uruguay. We used available historical records on the abundance of livestock and wildlife, the vampire bat distribution and occurrence of rabies outbreaks, as well as environmental modifications, to propose four alternative hypotheses to explain rabies virus emergence and spillover: bat movement, viral invasion, surveillance failure and environmental changes. While future statistical modelling efforts will be required to disentangle these hypotheses, we here show how a detailed historical analysis can be used to generate testable predictions for the conditions leading to pathogen spillover.  more » « less
Award ID(s):
1716698
NSF-PAR ID:
10110205
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Epidemiology and Infection
Volume:
147
ISSN:
0950-2688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.

     
    more » « less
  2. Rabies virus (RABV) transmitted by the common vampire bat ( Desmodus rotundus ) poses a threat to agricultural development and public health throughout the Neotropics. The ecology and evolution of rabies host–pathogen dynamics are influenced by two infection-induced behavioural changes. RABV-infected hosts often exhibit increased aggression which facilitates transmission, and rabies also leads to reduced activity and paralysis prior to death. Although several studies document rabies-induced behavioural changes in rodents and other dead-end hosts, surprisingly few studies have measured these changes in vampire bats, the key natural reservoir throughout Latin America. Taking advantage of an experiment designed to test an oral rabies vaccine in captive male vampire bats, we quantify for the first time, to our knowledge, how rabies affects allogrooming and aggressive behaviours in this species. Compared to non-rabid vampire bats, rabid individuals reduced their allogrooming prior to death, but we did not detect increases in aggression among bats. To put our results in context, we review what is known and what remains unclear about behavioural changes of rabid vampire bats (resumen en español, electronic supplementary material, S1). 
    more » « less
  3. Abstract

    Contaminants such as mercury are pervasive and can have immunosuppressive effects on wildlife. Impaired immunity could be important for forecasting pathogen spillover, as many land‐use changes that generate mercury contamination also bring wildlife into close contact with humans and domestic animals. However, the interactions among contaminants, immunity and infection are difficult to study in natural systems, and empirical tests of possible directional relationships remain rare.

    We capitalized on extreme mercury variation in a diverse bat community in Belize to test association among contaminants, immunity and infection. By comparing a previous dataset of bats sampled in 2014 with new data from 2017, representing a period of rapid agricultural land conversion, we first confirmed bat species more reliant on aquatic prey had higher fur mercury. Bats in the agricultural habitat also had higher mercury in recent years. We then tested covariation between mercury and cellular immunity and determined if such relationships mediated associations between mercury and bacterial pathogens. As bat ecology can dictate exposure to mercury and pathogens, we also assessed species‐specific patterns in mercury–infection relationships.

    Across the bat community, individuals with higher mercury had fewer neutrophils but not lymphocytes, suggesting stronger associations with innate immunity. However, the odds of infection for haemoplasmas andBartonellaspp. were generally lowest in bats with high mercury, and relationships between mercury and immunity did not mediate infection patterns. Mercury also showed species‐ and clade‐specific relationships with infection, being associated with especially low odds for haemoplasmas inPteronotus mesoamericanusandDermanura phaeotis. ForBartonellaspp., mercury was associated with particularly low odds of infection in the genusPteronotusbut high odds in the subfamily Stenodermatinae.

    Synthesis and application. Lower general infection risk in bats with high mercury despite weaker innate defense suggests contaminant‐driven loss of pathogen habitat (i.e. anemia) or vector mortality as possible causes. Greater attention to these potential pathways could help disentangle relationships among contaminants, immunity and infection in anthropogenic habitats and help forecast disease risks. Our results also suggest that contaminants may increase infection risk in some taxa but not others, emphasizing the importance of considering surveillance and management at different phylogenetic scales.

     
    more » « less
  4. Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over 7 years on bat body mass, infection and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat loss depended on infection severity. Lastly, we found mixed support that bat mass increased in the population after pathogen arrival; high annual plasticity in individual bat masses may have reduced the potential for directional selection. Overall, our results suggest that some factors that contribute to host survival during pathogen invasion may diminish over time and are potentially replaced by other host adaptations. 
    more » « less
  5. Abstract

    The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long‐term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long‐term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.

     
    more » « less