Abstract Pathogen spillover from wildlife to humans or domestic animals requires a series of conditions to align with space and time. Comparing these conditions between times and locations where spillover does and does not occur presents opportunities to understand the factors that shape spillover risk. Bovine rabies transmitted by vampire bats was first confirmed in 1911 and has since been detected across the distribution of vampire bats. However, Uruguay is an exception. Uruguay was free of bovine rabies until 2007, despite high-cattle densities, the presence of vampire bats and a strong surveillance system. To explore why Uruguay was free of bovine rabies until recently, we review the historic literature and reconstruct the conditions that would allow rabies invasion into Uruguay. We used available historical records on the abundance of livestock and wildlife, the vampire bat distribution and occurrence of rabies outbreaks, as well as environmental modifications, to propose four alternative hypotheses to explain rabies virus emergence and spillover: bat movement, viral invasion, surveillance failure and environmental changes. While future statistical modelling efforts will be required to disentangle these hypotheses, we here show how a detailed historical analysis can be used to generate testable predictions for the conditions leading to pathogen spillover.
more »
« less
Incorporating environmental heterogeneity and observation effort to predict host distribution and viral spillover from a bat reservoir
Predicting the spatial occurrence of wildlife is a major challenge for ecology and management. In Latin America, limited knowledge of the number and locations of vampire bat roosts precludes informed allocation of measures intended to prevent rabies spillover to humans and livestock. We inferred the spatial distribution of vampire bat roosts while accounting for observation effort and environmental effects by fitting a log Gaussian Cox process model to the locations of 563 roosts in three regions of Peru. Our model explained 45% of the variance in the observed roost distribution and identified environmental drivers of roost establishment. When correcting for uneven observation effort, our model estimated a total of 2340 roosts, indicating that undetected roosts (76%) exceed known roosts (24%) by threefold. Predicted hotspots of undetected roosts in rabies-free areas revealed high-risk areas for future viral incursions. Using the predicted roost distribution to inform a spatial model of rabies spillover to livestock identified areas with disproportionate underreporting and indicated a higher rabies burden than previously recognized. We provide a transferrable approach to infer the distribution of a mostly unobserved bat reservoir that can inform strategies to prevent the re-emergence of an important zoonosis.
more »
« less
- Award ID(s):
- 2011069
- PAR ID:
- 10526116
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 2011
- ISSN:
- 0962-8452
- Subject(s) / Keyword(s):
- Gaussian random field detection probability partially observed species species distribution models vampire bat rabies
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interactions among humans, livestock, and wildlife within disturbed ecosystems, such as those impacted by climate change, can facilitate pathogen spillover transmission and increase disease emergence risks. The study of future climate change impacts on the distribution of free-ranging bats is therefore relevant for forecasting potential disease burden. This study used current and future climate data and historic occurrence locations of the vampire bat speciesDesmodus rotundus, a reservoir of the rabies virus to assess the potential impacts of climate change on disease reservoir distribution. Analyses included a comprehensive comparison of different climate change periods, carbon emission scenarios, and global circulation models (GCMs) on final model outputs. Models revealed that, although climatic scenarios and GCMs used have a significant influence on model outputs, there was a consistent signal of range expansion across the future climates analyzed. Areas suitable forD. rotundusrange expansion include the southern United States and south-central portions of Argentina and Chile. Certain areas in the Amazon Rainforest, which currently rests at the geographic center ofD. rotundus’ range, may become climatically unsuitable for this species within the context of niche conservatism. While the impacts of rabies virus transmitted byD. rotunduson livestock are well known, an expansion ofD. rotundusinto novel areas may impact new mammalian species and livestock with unexpected consequences. Some areas in the Americas may benefit from an assessment of their preparedness to deal with an expectedD. rotundusrange expansion.more » « less
-
null (Ed.)Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources—conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.more » « less
-
Bat‐borne pathogens are a threat to global health and in recent history have had major impacts on human morbidity and mortality. Examples include diseases such as rabies, Nipah virus encephalitis, and severe acute respiratory syndrome (SARS). Climate change may exacerbate the emergence of bat‐borne pathogens by affecting the ecology of bats in tropical ecosystems. Here, we report the impacts of climate change on the distributional ecology of the common vampire batDesmodus rotundusacross the last century. Our retrospective analysis revealed a positive relationship between changes in climate and the northern expansion of the distribution ofD. rotundusin North America. Furthermore, we also found a reduction in the standard deviation of temperatures atD. rotunduscapture locations during the last century, expressed as more consistent, less‐seasonal climate in recent years. These results elucidate an association betweenD. rotundusrange expansion and a continental‐level rise in rabies virus spillover transmission fromD. rotundusto cattle in the last 50 years of the 120‐year study period. This correlative study, based on field observations, offers empirical evidence supporting previous statistical and mathematical simulation‐based studies reporting a likely increase of bat‐borne diseases in response to climate change. We conclude that theD. rotundusrabies system exemplifies the consequences of climate change augmentation at the wildlife–livestock–human interface, demonstrating how global change acts upon these complex and interconnected systems to drive increased disease emergence.more » « less
-
ABSTRACT BackgroundIn Latin America, there is a high incidence of vampire bat‐transmitted rabies in cattle causing increased mortality of livestock, which heavily impacts the agricultural sector. Anticoagulants‐based control methods for the common vampire bat (Desmodus rotundus) have been employed continuously since the 1970s with various methods of application, presentations, doses and active ingredients. Studies from half a century ago still serve as a reference for the current use of anticoagulants for bat‐borne rabies control in Latin America. The objective of this study was to structurally and bibliometrically review literature on the use of anticoagulants for the control ofD. rotundusas a means of rabies control. Materials & MethodsScientific literature on the use of anticoagulant products forD. rotunduscontrol was obtained, reviewed and analysed. Articles were retrieved from Scopus and Web of Science databases. Research articles from 1971 to 2021 in Spanish, English and Portuguese were included in the review. Results were visualised using RStudio, Bibliometrix and VOSviewer. ResultsThe body of literature indicates effectiveness of up to 100% in the use of anticoagulants to induce bat mortality. The effectiveness of anticoagulants for rabies control, however, remains uncertain. No evidence was found to support or refute the use of anticoagulants for rabies control. DiscussionInstead, literature suggests that disturbing bat colonies increases rabies prevalence. This finding suggests that anticoagulants may have the opposite intended effect on rabies control and highlights the importance of further research on the practical methods for bat‐borne rabies prevention. ConclusionField experimental studies that include control groups over areas and periods that account forD. rotundusecology are needed to determine the effectiveness of anticoagulants for rabies control in livestock. In conclusion, the use of anticoagulants for rabies control is questionable.more » « less
An official website of the United States government

