skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Tightening Unit-level and System-level Constraints in Unit Commitment,
Unit Commitment is an important problem faced by independent system operators. It is usually formulated as a Mixed Binary Linear Programming (MBLP) problem, and is believed to be NP hard. To solve UC problems efficiently, an idea is through formulation tightening. If constraints can be transformed to directly delineate an MBLP problem’s convex hull during data preprocessing, then the problem can be solved by using linear programming methods. The resulting formulation can be reused for other data sets, tremendously reducing computational requirements. To achieve the above goal, both unit- and system-level constraints are tightened with synergistic combination in this paper. Unit-level constraints are tightened based on existing cuts and novel “constraint-and-vertex conversion” and vertex projection processes. To tighten system-level constraints, selected cuts are applied and some potentially powerful cuts are identified. Numerical results demonstrate the effectiveness of tightening unit- and system-level constraints.  more » « less
Award ID(s):
1810108
PAR ID:
10110466
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Power & Energy Society General Meeting
ISSN:
1944-9933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unit Commitment is usually formulated as a Mixed Binary Linear Programming (MBLP) problem. When considering a large number of units, state-of-the-art methods such as branch-and-cut may experience difficulties. To address this, an important but much overlooked direction is formulation transformation since if the problem constraints can be transformed to directly delineate the convex hull in the data pre-processing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. In the literature, a few tightened formulations for single units with constant ramp rates were reported without presenting how they were derived. In this paper, a systematic approach is developed to tighten formulations in the data pre-processing stage. The idea is to derive vertices of the convex hull without binary requirements. From them, vertices of the original convex hull can be innovatively obtained. These vertices are converted to tightened constraints, which are then parameterized based on unit parameters for general use, tremendously reducing online computational requirements. By analyzing short-time horizons, e.g., two or three hours, tightened formulations for single units with constant and generation-dependent ramp rates are obtained, beyond what is in the literature. Results demonstrate computational efficiency and solution quality benefits of formulation tightening. 
    more » « less
  2. null (Ed.)
    Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may combinatorial difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the linear problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. 
    more » « less
  3. null (Ed.)
    Job shops are an important production environment for low-volume high-variety manufacturing. When there are urgent orders, the speeds of certain machines can be adjusted with a high energy and wear and tear cost. Scheduling in such an environment is to achieve on-time deliveries and low energy costs. The problem is, however, complicated because part processing time depends on machine speeds, and machines need to be modeled individually to capture energy costs. This paper is to obtain near-optimal solutions efficiently. The problem is formulated as a Mixed-Integer Linear Programming (MILP) form to make effective use of available MILP methods. This is done by modeling machines in groups for simplicity while approximating energy costs, and by linking part processing status and machine speed variables. Nevertheless, the resulting problem is still complicated. The formulation is therefore transformed by extending our previous tightening approach for machines with constant speeds. The idea is that if constraints can be transformed to directly delineate the convex hull, then the problem can be solved by linear programming methods. To solve the problem efficiently, our advanced decomposition and coordination method is used. Numerical results show that near-optimal solutions are obtained, demonstrating significant benefits of our approach on on-time deliveries and energy costs. 
    more » « less
  4. This paper proposes the risk-limiting unit commitment (RLUC) as the operational method to address the uncertainties in the smart grid with intelligent periphery (GRIP). Three key requirements are identified for the RLUC in GRIP. The first one requires the RLUC to be modeled as a multi-stage multi-period unit commitment problem considering power trades, operational constraints, and operational risks. The second one requires the RLUC considering the conditional prediction to achieve a globally optimal solution. It is addressed by using conditional probability in a scenario-based form. The last one requires the risk index in the RLUC to be both valid and computationally friendly, and it is tackled by the utilization of a coherent risk index and the mathematical proof of a risk chain theorem. Finally, the comprehensive RLUC in GRIP satisfying all the three requirements is solved by an equivalent transformation into a mixed integer piecewise linear programming problem. Case studies on a 9-bus system, a realistic provincial power system, and a regional power grid in China demonstrate the advantages of the proposed RLUC in GRIP. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has been unimproved for more than two decades. Our work also removes an important bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95) and finding an even-length directed cycle in a graph, a problem shown to be equivalent to many other fundamental problems (Vazirani and Yannakakis '90, Robertson et al. '99). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain a near-linear time algorithm, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of using connectivity oracles subject to vertex failures to speed up a static graph algorithm. 
    more » « less