skip to main content


Title: Risk-limiting Unit Commitment in Smart Grid with Intelligent Periphery
This paper proposes the risk-limiting unit commitment (RLUC) as the operational method to address the uncertainties in the smart grid with intelligent periphery (GRIP). Three key requirements are identified for the RLUC in GRIP. The first one requires the RLUC to be modeled as a multi-stage multi-period unit commitment problem considering power trades, operational constraints, and operational risks. The second one requires the RLUC considering the conditional prediction to achieve a globally optimal solution. It is addressed by using conditional probability in a scenario-based form. The last one requires the risk index in the RLUC to be both valid and computationally friendly, and it is tackled by the utilization of a coherent risk index and the mathematical proof of a risk chain theorem. Finally, the comprehensive RLUC in GRIP satisfying all the three requirements is solved by an equivalent transformation into a mixed integer piecewise linear programming problem. Case studies on a 9-bus system, a realistic provincial power system, and a regional power grid in China demonstrate the advantages of the proposed RLUC in GRIP.  more » « less
Award ID(s):
1637258
PAR ID:
10026383
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, an improved multi-period risk-limiting dispatch (IMRLD) is proposed as an operational method in power systems with high percentage renewables integration. The basic risk-limiting dispatch (BRLD) is chosen as an operational paradigm to address the uncertainty of renewables in this paper due to its three good features. In this paper, the BRLD is extended to the IMRLD so that it satisfies the fundamental operational requirements in the power industry. In order to solve the IMRLD problem, the convexity of the IMRLD is verified. A theorem is stated and proved to transform the IMRLD into a piece-wise linear optimization problem which can be efficiently solved. In addition, the locational marginal price of the IMRLD is derived to analyze the effect of renewables integration on the marginal operational cost. Finally, two numerical tests are conducted to validate the IMRLD. 
    more » « less
  2. Abstract

    Electric utilities are considering replacing their coal power plants with renewables and energy storage to reduce emissions. However, they have also expressed concerns about operational changes and system reliability brought by these replacements. Utilities in remote rural areas face more challenges as they also face energy insecurity while having limited interconnections to wider systems and reliance on imported fuels. Therefore, it is critical for remote utilities to understand different coal replacement approaches and their impacts on system expansion, operation and energy security. In this paper, we define and investigate three approaches to replace coal using wind and batteries: (1) replacing exact coal generation, (2) replacing at least coal generation, and (3) replacing total energy provided by coal. We develop a case study inspired by the small remote grid in Fairbanks, Alaska, which has a single limited interconnection with the grid south of it. We utilize a power system expansion and economic dispatch model that co-optimizes the capacities of wind and batteries required for each approach and the hourly dispatch of energy and reserves for one year. We further analyze the operational cost variability under fixed and fluctuating fuel prices. We find that replacing the exact coal generation requires minimal operational changes, but also significantly more wind and battery capacities. In contrast, replacing total energy provided by coal induces more cycling in other resources, challenging grids with limited flexibility-providing resources. However, replacing total energy provided by coal allows more generation variability in response to fuel price fluctuations, enhancing energy security.

     
    more » « less
  3. Unit Commitment is an important problem faced by independent system operators. It is usually formulated as a Mixed Binary Linear Programming (MBLP) problem, and is believed to be NP hard. To solve UC problems efficiently, an idea is through formulation tightening. If constraints can be transformed to directly delineate an MBLP problem’s convex hull during data preprocessing, then the problem can be solved by using linear programming methods. The resulting formulation can be reused for other data sets, tremendously reducing computational requirements. To achieve the above goal, both unit- and system-level constraints are tightened with synergistic combination in this paper. Unit-level constraints are tightened based on existing cuts and novel “constraint-and-vertex conversion” and vertex projection processes. To tighten system-level constraints, selected cuts are applied and some potentially powerful cuts are identified. Numerical results demonstrate the effectiveness of tightening unit- and system-level constraints. 
    more » « less
  4. This study discusses a security‐constrained unit commitment (SCUC) based optimal power tracing approach, which adopts the proportional power tracing method to trace power flows of the network for simultaneously satisfying physical contract paths and financial contract quantities of bilateral transactions. Thus, optimal solutions of the proposed model, including unit commitment and generation dispatch of generators and angle statuses of phase shifters, would simultaneously meet physical and financial requirements of bilateral transactions, and in turn reduce the impacts of loop flows induced by bilateral transactions to third parties of the networked system. The proposed model is a mixed integer non‐linear programming problem because of the non‐linear proportional power tracing constraints, and the revised outer approximation algorithm is discussed to effectively solve the problem. The effectiveness of the proposed model is further evaluated via an integrated power‐money flow analysis, based on the locational marginal price based energy payments and the min–max fairness policy based transmission usage charges. Numerical case studies show that the proposed model, as compared with traditional financial bilateral transaction models, presents potential advantages to avoid loop flows and reduce the impacts to third parties in terms of energy and transmission usage payments.

     
    more » « less
  5. null (Ed.)
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the other via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the suggested assessment techniques. 
    more » « less