With the computational resources becoming available, data-driven methods have emerged as powerful means for equation discovery and model construction. Sparse regression methods such as SINDy (Sparse Identification for Nonlinear Dynamical Systems) can be used for developing reduced-order models of nonlinear systems. In this study, the authors examine how SINDy can be used for developing low-dimensional models for airfoil systems, which experience unsteady aerodynamic loads and flutter instabilities. For a system of multiple closely spaced airfoil oscillators, analytical models are not readily available to determine flutter instabilities, and one has to take recourse to experimental and numerical means. In this work, as a starting point, data collected through simulations of unsteady aerodynamics of a single airfoil oscillator system are considered and a reduced-order model is constructed based on this data.
more »
« less
Analysis of Large Heterogeneous Repairable System Reliability Data with Static System Attributes and Dynamic Sensor Measurement in Big Data Environment
An official website of the United States government

