skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: U-Pb memory behavior in Chicxulub's peak ring — Applying U-Pb depth profiling to shocked zircon
Award ID(s):
1737351 1737087
PAR ID:
10110776
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Geology
Volume:
525
Issue:
C
ISSN:
0009-2541
Page Range / eLocation ID:
356 to 367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The loss of radiogenic Pb from zircon is known to be a major factor that can cause inaccuracy in the U–Pb geochronological system; hence, there is a need to better characterize the distribution of Pb loss in natural samples. Treatment of zircon by chemical abrasion (CA) has become standard practice in isotope dilution–thermal ionization mass spectrometry (ID-TIMS), but CA is much less commonly employed prior to in situ analysis via laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) or secondary ionization mass spectrometry (SIMS). Differentiating the effects of low levels of Pb loss in Phanerozoic zircon with relatively low-precision in situ U–Pb dates, where the degree of Pb loss is insufficient to cause discernible discordance, is challenging. We show that U–Pb isotopic ratios that have been perturbed by Pb loss may be modeled by convolving a Gaussian distribution that represents random variations from the true isotopic value stemming from analytical uncertainty with a distribution that characterizes Pb loss. We apply this mathematical framework to model the distribution of apparent Pb loss in 10 igneous samples that have both non-CA LA-ICP-MS or SIMS U–Pb dates and an estimate of the crystallization age, either through CA U–Pb or 40Ar/39Ar geochronology. All but one sample showed negative age offsets that were unlikely to have been drawn from an unperturbed U–Pb date distribution. Modeling apparent Pb loss using the logit–normal distribution produced good fits with all 10 samples and showed two contrasting patterns in apparent Pb loss; samples where most zircon U–Pb dates undergo a bulk shift and samples where most zircon U–Pb dates exhibited a low age offset but fewer dates had more significant offset. Our modeling framework allows comparison of relative degrees of apparent Pb loss between samples of different age, with the first and second Wasserstein distances providing useful estimates of the total magnitude of apparent Pb loss. Given that the large majority of in situ U–Pb dates are acquired without the CA treatment, this study highlights a pressing need for improved characterization of apparent Pb-loss distributions in natural samples to aid in interpreting non-CA in situ U–Pb data and to guide future data collection strategies.

     
    more » « less
  2. We document the performance of new ATONA (‘aA to nA’) amplifiers installed on an Isotopx Phoenix thermal ionisation mass spectrometer (TIMS) at Princeton University and evaluate their suitability for high-precision analyses of Pb and U isotopes in pg- to ng-size samples characteristic for U–Pb geochronology. The new amplifiers are characterised by low and stable noise levels comparable to 10 12 to 10 13 ohm resistors, response time <0.5 s, exceptional gain stability <1 ppm and a vast dynamic range theoretically allowing to quantify signals from aA (10 −18 A) to nA (10 −9 A) level. We measured a set of Pb standards, synthetic U–Pb solutions and natural zircons at currents of 2 × 10 −16 to 2 × 10 −12 A (corresponding to intensities of 20 μV to 200 mV relative to a 10 11 ohm amplifier) to assess the utility of ATONA in replacing ion counting for the smallest samples. The results show a clear precision benefit of using ATONA-Faraday detection over Daly ion counting for ion currents of >10 −14 A (1 mV relative to a 10 11 ohm amplifier or ca. 60 kcps). As such currents are routinely achievable for major Pb peaks of interest ( 205–208 Pb) in natural samples containing more than ca. 10 pg Pb* (radiogenic Pb), we expect ATONA-Faraday detection to find broad applications in U–Pb geochronology. Its practical use for low-blank, radiogenic samples continues to require ion counting for 204 Pb, either with a fixed Faraday–ion counter gain or using a dynamic two-step ( e.g. FaraDaly) method. Routine adoption of ATONA-Faraday collection in place of ion counting for most major Pb and U isotopes has the potential to increase sample throughput and precision, both improving the accessibility of isotope dilution (ID)-TIMS geochronology and pushing this technique towards better reproducibility. 
    more » « less
  3. null (Ed.)
    Abstract Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates. 
    more » « less
  4. Titanite has the ability to incorporate significant amounts of common Pb, which leads to uncertainty when applying the U-Pb decay series for geochronology. The isobaric interference of 204Hg on 204Pb poses an additional complexity in applying common Pb corrections. Here we investigate the removal of 204Hg interferences during titanite U-Pb dating using reaction cell gas chemistry via triple quadrupole mass spectrometry. U-Pb dates were determined for the natural titanite reference materials MKED-1 and BLR1 using an ESI NWR193UC excimer laser coupled to an Agilent 8900 ‘triple quad’ mass spectrometer. The 8900 is equipped with an octopole collision/reaction cell, which enables online interference removal. Two experiments were run, one in which we collected data in NoGas mode, and one in which NH3 was used as a reaction cell gas in MS/MS mode, in order to assess the feasibility of determining U/Pb ratios with mass shifted isotopes. In all experiments, a signal smoothing device was placed inline just before the ICP-MS interface, downstream from the addition of the Ar nebulizer gas to the He carrier gas stream. For the NoGas experiment, titanite was ablated using a 25 µm spot, with a beam energy density of 3 J/cm2, and a pulse rate of 4 Hz. In NoGas mode, signal intensities for the isotopes 201Hg, 202Hg, 204Pb, 206Pb, 207Pb, 232Th, 235U, and 238U were counted. In MS/MS mode, titanite was ablated using a 40 µm spot, with a beam energy density of 5 J/cm2, and a pulse rate of 4 Hz. A larger spot size in this experiment was used to counteract the decrease in signal intensity due to use of the reaction cell. In MS/MS mode, NH3 was flowed through the reaction cell in order to enable a charge transfer reaction between NH3 and Hg+, effectively neutralizing Hg. The isotopes 201Hg, 202Hg, 204Pb, 206Pb, and 207Pb were measured on-mass, as the isotopes of Pb are not affected by the NH3 gas. Uranium and Th both exhibit partial reaction with NH3 gas; therefore, the isotopes 232Th, 235U, and 238U were measured mass-shifted up 15 mass units, at masses 247, 250, and 253 respectively. Ratios of 207Pb/235U, 206Pb/238U, and 207Pb/206Pb were determined using the UPbGeochron4 DRS in Iolite (v.3.71) with MKED-1 as the primary reference material. Dates were calculated using IsoplotR by applying the Stacey-Kramers correction for common Pb. All isotopes of Hg were effectively neutralized by the NH3 charge transfer reaction in MS/MS mode; zero counts were detected for Hg isotopes. Dates for the BLR-1 titanite were 1050.55 ± 2.72 (2σ, n=12) Ma in NoGas mode, and 1048 ± 1.88 (2σ, n=15) Ma in MS/MS mode. These dates are in excellent agreement with the TIMS 206Pb/238U date for the BLR-1 titanite of 1047.1 ± 0.4 Ma. This method has the potential to enable measurement of 204Pb without needing to correct for Hg interferences. 
    more » « less