- Publication Date:
- NSF-PAR ID:
- 10294096
- Journal Name:
- Sustainability
- Volume:
- 13
- Issue:
- 2
- Page Range or eLocation-ID:
- 711
- ISSN:
- 2071-1050
- Sponsoring Org:
- National Science Foundation
More Like this
-
The state of New York has ambitious mandates for reducing greenhouse gas emissions and increasing renewable energy generation. Solar energy will play an important role in reducing greenhouse gas emissions from the electric energy sector. Concerns over solar installations’ impacts to host communities and the environment have led to growing conflicts over solar energy siting on Long Island, in other parts of New York, and throughout the US. Understanding community members’ perspectives is critical for reducing conflict. Solar energy can be deployed more quickly and at lower cost if projects are structured to address the concerns and meet the needs of the community. This paper presents the results of a survey of residential utility ratepayers that examined their perceptions, preferences, and priorities concerning mid- to large-scale solar development on Long Island (250 kW and larger). The survey asked respondents to consider specific installation types, financial models, and other aspects of solar development. Results indicate that respondents were overwhelmingly supportive of mid- to large-scale solar development in their communities. The most highly supported development types were solar systems on rooftops and solar systems that are co-located with other land uses (mixed use) at a particular site, such as parking canopies, landfills,more »
-
Abstract Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions. Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was previously possible. Here, we review the current state of the application of these technologies to the analysis of spider communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity and molecular gut content analysis for assessing predator-prey relationships. We alsomore »
-
Abstract .Microreactor-Assisted Nanomaterial Deposition (MAND) process offers unique capabilities in achieving large size and shape control levels while providing a more rapid path for scaling via process intensification for nanomaterial production. This review highlights the application of continuous flow microreactors to synthesize, assemble, transform, and deposit nanostructured materials for Solar Photovoltaics, the capabilities of MAND in the field, and the potential outlook of MAND Microreactor-Assisted Nanomaterial Deposition (MAND) is a promising technology that synthesizes reactive fluxes and nanomaterials to deposit nanostructured materials at the point of use. MAND offers precise control over reaction, organization, and transformation processes to manufacture nanostructured materials with distinct morphologies, structures, and properties. In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations, leading to more uniform heating and mixing in the deposition process. The possibility of synthesizing nanomaterials in the required volumes at the point of application eliminates the need to store and transport potentially hazardous materials. Further, MAND provides new opportunities for tailoring novel nanostructures and nano-shaped features, opening the opportunity to assemble unique nanostructures and nanostructured thin films. MAND processes control the heat transfer,more »
Graphical abstract -
Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to amore »
-
Abstract
Between 2018 and 2021 PIs for National Science Foundation Awards # 1758781 and 1758814 EAGER: Collaborative Research: Developing and Testing an Incubator for Digital Entrepreneurship in Remote Communities, in partnership with the Tanana Chiefs Conference, the traditional tribal consortium of the 42 villages of Interior Alaska, jointly developed and conducted large-scale digital and in-person surveys of multiple Alaskan interior communities. The survey was distributed via a combination of in-person paper surveys, digital surveys, social media links, verbal in-person interviews and telephone-based responses. Analysis of this measure using SAS demonstrated the statistically significant need for enhanced digital infrastructure and reworked digital entrepreneurial and technological education in the Tanana Chiefs Conference region. 1. Two statistical measures were created during this research: Entrepreneurial Readiness (ER) and Digital Technology needs and skills (DT), both of which showed high measures of internal consistency (.89, .81). 2. The measures revealed entrepreneurial readiness challenges and evidence of specific addressable barriers that are currently preventing (serving as hindrances) to regional digital economic activity. The survey data showed statistically significant correlation with the mixed-methodological in-person focus groups and interview research conducted by the PIs and TCC collaborators in Hughes and Huslia, AK, which further corroborated stated barriers to