skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration
Solar photovoltaic (PV) energy technology can play a key role in decreasing the amount of carbon emissions associated with electrical energy production, while also providing an economically justifiable alternative to fossil fuel production. Solar energy technology is also extremely flexible in terms of the size and siting of technological development. Large scale PV farms, however, require access to large tracts of land, which can create community-scale conflict over siting solar energy development projects. While previous scholarship offers frameworks for understanding the mechanisms at play in socio-technological system transitions, including the renewable energy transition, those frameworks fail to center community priorities, values, and concerns, and therefore often do not provide an effective means of addressing community conflict over solar siting. This paper provides a conceptual exploration of how a proposed framework can guide decision making for solar development across multiple scales and settings, while also illuminating the potential barriers and bottlenecks that may limit the potential of solar energy development to occur in scales and forms that receive community acceptance and at the pace necessary to address the greenhouse gas emissions currently contributing to the rapidly changing global climate.  more » « less
Award ID(s):
1934346 1934348
PAR ID:
10294096
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
13
Issue:
2
ISSN:
2071-1050
Page Range / eLocation ID:
711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The state of New York has ambitious mandates for reducing greenhouse gas emissions and increasing renewable energy generation. Solar energy will play an important role in reducing greenhouse gas emissions from the electric energy sector. Concerns over solar installations’ impacts to host communities and the environment have led to growing conflicts over solar energy siting on Long Island, in other parts of New York, and throughout the US. Understanding community members’ perspectives is critical for reducing conflict. Solar energy can be deployed more quickly and at lower cost if projects are structured to address the concerns and meet the needs of the community. This paper presents the results of a survey of residential utility ratepayers that examined their perceptions, preferences, and priorities concerning mid- to large-scale solar development on Long Island (250 kW and larger). The survey asked respondents to consider specific installation types, financial models, and other aspects of solar development. Results indicate that respondents were overwhelmingly supportive of mid- to large-scale solar development in their communities. The most highly supported development types were solar systems on rooftops and solar systems that are co-located with other land uses (mixed use) at a particular site, such as parking canopies, landfills, or integration with agriculture. The most highly supported financial models included privately funded projects by local developers and community solar projects. The largest concern about solar development expressed by respondents did not involve tree removal or visibility (as initially hypothesized to be the most significant considerations) but rather the fairness of the distribution of economic benefits associated with solar development. This paper provides concrete insight into particular models of solar development that may invoke less conflict and more community support. 
    more » « less
  2. Policies aiding biofuels have supported farm income and rural communities but have also put pressure on food security with questionable benefits related to carbon emissions. Photovoltaics (PV) are poised to become central to the overall energy decarbonization strategy, but because of land requirements they are likely to be developed on farmland, reigniting concerns related to food security. In this work, we study strategies for co-producing food and energy from corn croplands. We find that while traditional PV displaces crops, they can harvest orders of magnitude more energy per unit of land than biofuels. Additionally, systems with elevated PV panels (called PV Aglectric, Agrivoltaics, or Agrophotovoltaics) that allow for crop production underneath them can increase energy production and reduce carbon emissions with minimal impact on crop production. This technology can ease the trade-off between farm income, energy production, crop production, and energy decarbonization. Adoption of PV Aglectric systems may be hindered by high capital costs, but this barrier could be overcome with policy support, especially when crop prices are highly volatile. 
    more » « less
  3. Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems. 
    more » « less
  4. Land use regulations have played a critical role in the siting and operation of renewable energy technologies. While there is a growing literature on the siting of wind and solar technologies, less is known about the relationship between local codes and planning decisions and the development of wood-based bioenergy technologies, particularly in rural places. This research examines the relationship between local land use policies and the siting and operation of different types of wood-based bioenergy technologies in northern Michigan, USA. Land use codes including zoning laws and ordinances related to wood-burning devices from 506 cities, townships, and villages within 36 counties in northern Michigan were combined with US Census data in a GIS database. ArcGIS was used to examine geographical differences between communities and socioeconomic factors related to different regulatory approaches. We found that areas with greater population densities and higher income and education levels tended to have more nuanced land use codes related to all scales of wood-burning, including residential wood heating, commercial-scale heating, and power generation. This paper emphasizes the importance of local decision-making and land use policies in shaping the development of wood-based energy technologies, and suggests the need for greater attention to rural community dynamics in planning the shift to a lower-carbon economy. 
    more » « less
  5. Amidst the challenges posed by the high penetration of distributed energy resources (DERs), particularly a number of distributed photovoltaic plants (DPVs), in modern electric power distribution systems (MEPDS), the integration of new technologies and frameworks become crucial for addressing operation, management, and planning challenges. Situational awareness (SA) and situational intelligence (SI) over multi-time scales is essential for enhanced and reliable PV power generation in MEPDS. In this paper, data-driven digital twins (DTs) are developed using AI paradigms to develop actual and/or virtual models of DPVs, These DTs are then applied for estimating and forecasting the power outputs of physical and virtual PV plants. Virtual weather stations are used to estimate solar irradiance and temperature at user-selected locations in a localized region, using inferences from physical weather stations. Three case studies are examined based on data availability: physical PV plant, hybrid PV plants, and virtual PV plants, generating realtime estimations and short-term forecasts of PV power production that can support distribution system studies and decision-making. 
    more » « less