Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO).
more »
« less
Scenario-based Economic Dispatch with Tunable Risk Levels in High-renewable Power Systems
This paper introduces an empirical approach to dispatch resources in real-time power system operation with growing levels of uncertainties emerging from intermittent and distributed energy resources in the supply and the demand side. It is shown that by taking empirical data of specific sizes, the dispatch results can lead to a quantifiable and rigorous bound on the risk of violating constraints at the implementation stage. In particular, we formulate the look-ahead real-time economic dispatch problem using the scenario approach. This approach takes empirical data as input and guarantees a tunable probability of violating the constraints according to the input data size. By exploiting the structure of the economic dispatch, we show that in the absence of transmission constraints, the number of samples theory requires does not grow with the size of the problem. In the more general case with consideration of transmission constraints, it is shown that the posterior bound on the risk of dispatch can be quantified and can be much smaller than the risk bound before solving the dispatch. Numerical examples based on a standard test system suggest that the scenario approach can provide a practically attractive solution with theoretically rigorous properties for risk-limiting power system operations.
more »
« less
- Award ID(s):
- 1636772
- PAR ID:
- 10110828
- Date Published:
- Journal Name:
- IEEE Transactions on Power Systems
- ISSN:
- 0885-8950
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time con- suming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian- process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Loe`ve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method.more » « less
-
The urgent need for the decarbonization of power girds has accelerated the integration of renewable energy. Con-currently the increasing distributed energy resources (DER) and advanced metering infrastructures (AMI) have transformed the power grids into a more sophisticated cyber-physical system with numerous communication devices. While these transitions provide economic and environmental value, they also impose increased risk of cyber attacks and operational challenges. This paper investigates the vulnerability of the power grids with high renewable penetration against an intraday false data injection (FDI) attack on DER dispatch signals and proposes a kernel support vector regression (SVR) based detection model as a countermeasure. The intraday FDI attack scenario and the detection model are demonstrated in a numerical experiment using the HCE 187-bus test system.more » « less
-
This paper presents an experimental demonstration of a novel real-time Energy Management System (EMS) for inverter-based microgrids to achieve optimal economic operation using a simple dynamic algorithm without offline optimization process requirements. The dynamic algorithm solves the economic dispatch problem offering an adequate stability performance and an optimal power reference tracking under sudden load and generation changes. Convergence, optimality and frequency regulation properties of the real-time EMS are shown, and the effectiveness and compatibility with inner and primary controllers are validated in experiments, showing better performance on optimal power tracking and frequency regulation than conventional droop control power sharing techniques.more » « less
-
There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables.more » « less