skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pricing Conditional Value at Risk-Sensitive Economic Dispatch
There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables.  more » « less
Award ID(s):
2048065
PAR ID:
10315056
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society General Meeting (PESGM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. If a trader could predict price changes in the stock market better than other traders, she would make a fortune. Similarly in the electricity market, a trader that could predict changes in the electricity load, and thus electricity prices, would be able to make large profits. Predicting price changes in the electricity market better than other market participants is hard, but in this paper, we show that attackers can manipulate the electricity prices in small but predictable ways, giving them a competitive advantage in the market. Our attack is possible when the adversary controls a botnet of high wattage devices such as air conditioning units, which are able to abruptly change the total demand of the power grid. Such attacks are called Manipulation of Demand via IoT (MaDIoT) attacks. In this paper, we present a new variant of MaDIoT and name it Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. 
    more » « less
  2. Dynamic pricing, also known as real-time pricing, provides electricity users with an economic incentive to adjust electricity use based on changing market conditions. This paper studies the economic implications of real-time pricing mechanisms in a cement manufacturing plant. Production for a representative cement manufacturing plant is modeled using stochastic mathematical programming. The results show that a cement plant can a) reduce electricity costs by shifting electricity load of certain processes to times when electricity prices are lower, and b) profitably reduce electricity use during peak prices through more efficient scheduling of production under real-time pricing compared to fixed pricing. The results suggest that building scheduling flexibility into certain industrial manufacturing processes to reschedule electricity consumption when the electricity prices at their peak may be economical. The results also suggest that shifts in the production schedule of a cement manufacturer that result from real-time pricing may also influence environmental impacts. The modelling framework modeled real-time pricing as a source of risk in this study, which is also applicable to other energy intensive industries. As such, dynamic pricing strategies that include the non-market impacts of electricity generation should be further explored. 
    more » « less
  3. While deep learning gradually penetrates operational planning, its inherent prediction errors may significantly affect electricity prices. This letter examines how prediction errors propagate into electricity prices, revealing notable pricing errors and their spatial disparity in congested power systems. To improve fairness, we propose to embed electricity market-clearing optimization as a deep learning layer. Differentiating through this layer allows for balancing between prediction and pricing errors, as oppose to minimizing prediction errors alone. This layer implicitly optimizes fairness and controls the spatial distribution of price errors across the system. We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing. 
    more » « less
  4. This paper proposes a market mechanism for multi-interval electricity markets with generator and storage participants. Drawing ideas from supply function bidding, we introduce a novel bid structure for storage participation that allows storage units to communicate their cost to the market using energy cycling functions that map prices to cycle depths. The resulting market-clearing process--implemented via convex programming--yields corresponding schedules and payments based on traditional energy prices for power supply and per-cycle prices for storage utilization. We illustrate the benefits of our solution by comparing the competitive equilibrium of the resulting mechanism to that of an alternative solution that uses prosumer-based bids. Our solution shows several advantages over the prosumer-based approach. It does not require a priori price estimation. It also incentivizes participants to reveal their truthful costs, thus leading to an efficient, competitive equilibrium. Numerical experiments using New York Independent System Operator (NYISO) data validate our findings. 
    more » « less
  5. The sharing economy has upset the market for housing and transportation services. Homeowners can rent out their property when they are away on vacation, car owners can offer ridesharing services. These sharing economy business models are based on monetizing under-utilized infrastructure. They are enabled by peer-to-peer platforms that match eager sellers with willing buyers. Are there compelling sharing economy opportunities in the electricity sector? What products or services can be shared in tomorrow’s Smart Grid? We begin by exploring sharing economy opportunities in the electricity sector, and discuss regulatory and technical obstacles to these opportunities. We then study the specific problem of a collection of firms sharing their electricity storage. We characterize equilibrium prices for shared storage in a spot market. We formulate storage investment decisions of the firms as a non-convex non-cooperative game. We show that under a mild alignment condition, a Nash equilibrium exists, it is unique, and it supports the social welfare. We discuss technology platforms necessary for the physical exchange of power, and market platforms necessary to trade electricity storage. We close with synthetic examples to illustrate our ideas. 
    more » « less