skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Pricing Conditional Value at Risk-Sensitive Economic Dispatch
There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables.  more » « less
Award ID(s):
2048065
PAR ID:
10315056
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society General Meeting (PESGM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. If a trader could predict price changes in the stock market better than other traders, she would make a fortune. Similarly in the electricity market, a trader that could predict changes in the electricity load, and thus electricity prices, would be able to make large profits. Predicting price changes in the electricity market better than other market participants is hard, but in this paper, we show that attackers can manipulate the electricity prices in small but predictable ways, giving them a competitive advantage in the market. Our attack is possible when the adversary controls a botnet of high wattage devices such as air conditioning units, which are able to abruptly change the total demand of the power grid. Such attacks are called Manipulation of Demand via IoT (MaDIoT) attacks. In this paper, we present a new variant of MaDIoT and name it Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. 
    more » « less
  2. Dynamic pricing, also known as real-time pricing, provides electricity users with an economic incentive to adjust electricity use based on changing market conditions. This paper studies the economic implications of real-time pricing mechanisms in a cement manufacturing plant. Production for a representative cement manufacturing plant is modeled using stochastic mathematical programming. The results show that a cement plant can a) reduce electricity costs by shifting electricity load of certain processes to times when electricity prices are lower, and b) profitably reduce electricity use during peak prices through more efficient scheduling of production under real-time pricing compared to fixed pricing. The results suggest that building scheduling flexibility into certain industrial manufacturing processes to reschedule electricity consumption when the electricity prices at their peak may be economical. The results also suggest that shifts in the production schedule of a cement manufacturer that result from real-time pricing may also influence environmental impacts. The modelling framework modeled real-time pricing as a source of risk in this study, which is also applicable to other energy intensive industries. As such, dynamic pricing strategies that include the non-market impacts of electricity generation should be further explored. 
    more » « less
  3. While deep learning gradually penetrates operational planning, its inherent prediction errors may significantly affect electricity prices. This letter examines how prediction errors propagate into electricity prices, revealing notable pricing errors and their spatial disparity in congested power systems. To improve fairness, we propose to embed electricity market-clearing optimization as a deep learning layer. Differentiating through this layer allows for balancing between prediction and pricing errors, as oppose to minimizing prediction errors alone. This layer implicitly optimizes fairness and controls the spatial distribution of price errors across the system. We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing. 
    more » « less
  4. null (Ed.)
    We consider decentralized scheduling of Distributed Energy Resources (DERs) in a day-ahead market that clears energy and reserves offered by both centralized generators and DERs. Recognizing the difficulty of scheduling transmission network connected generators together with distribution feeder connected DERs that have complex intertemporal preferences and dynamics, we propose a tractable distributed algorithm where DERs self-schedule based on granular Distribution Locational Marginal Prices (DLMPs) derived from LMPs augmented by distribution network costs. For the resulting iterative DER self-scheduling process, we examine the opportunity of DERs to engage in strategic behavior depending on whether DERs do or do not have access to detailed distribution feeder information. Although the proposed distributed algorithm is tractable on detailed real-life network models, we utilize a simplified T&D network model to derive instructive analytical and numerical results on the impact of strategic DER behavior on social welfare loss, and the distribution of costs and benefits to various market participants. 
    more » « less
  5. Abstract

    This paper studies the optimal investment problem with random endowment in an inventory‐based price impact model with competitive market makers. Our goal is to analyze how price impact affects optimal policies, as well as both pricing rules and demand schedules for contingent claims. For exponential market makers preferences, we establish two effects due to price impact: constrained trading and nonlinear hedging costs. To the former, wealth processes in the impact model are identified with those in a model without impact, but with constrained trading, where the (random) constraint set is generically neither closed nor convex. Regarding hedging, nonlinear hedging costs motivate the study of arbitrage free prices for the claim. We provide three such notions, which coincide in the frictionless case, but which dramatically differ in the presence of price impact. Additionally, we show arbitrage opportunities, should they arise from claim prices, can be exploited only for limited position sizes, and may be ignored if outweighed by hedging considerations. We also show that arbitrage‐inducing prices may arise endogenously in equilibrium, and that equilibrium positions are inversely proportional to the market makers' representative risk aversion. Therefore, large positions endogenously arise in the limit of either market maker risk neutrality, or a large number of market makers.

     
    more » « less