skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Ecological Restoration to Curb Biotic Invasion—A Practical Guide
Abstract Common practices for invasive species control and management include physical, chemical, and biological approaches. The first two approaches have clear limitations and may lead to unintended (negative) consequences, unless carefully planned and implemented. For example, physical removal rarely completely eradicates the targeted invasive species and can cause disturbances that facilitate new invasions by nonnative species from nearby habitats. Chemical treatments can harm native, and especially rare, species through unanticipated side effects. Biological methods may be classified as biocontrol and the ecological approach. Similar to physical and chemical methods, biocontrol also has limitations and sometimes leads to unintended consequences. Therefore, a relatively safer and more practical choice may be the ecological approach, which has two major components: (1) restoration of native species and (2) biomass manipulation of the restored community, such as selective grazing or prescribed burning (to achieve and maintain viable population sizes). Restoration requires well-planned and implemented planting designs that consider alpha-, beta-, and gamma-diversity and the abundance of native and invasive component species at local, landscape, and regional levels. Given the extensive destruction or degradation of natural habitats around the world, restoration could be most effective for enhancing ecosystem resilience and resistance to biotic invasions. At the same time, ecosystems in human-dominated landscapes, especially those newly restored, require close monitoring and careful intervention (e.g., through biomass manipulation), especially when successional trajectories are not moving as intended. Biomass management frequently uses prescribed burning, grazing, harvesting, and thinning to maintain overall ecosystem health and sustainability. Thus, the resulting optimal, balanced, and relatively stable ecological conditions could more effectively limit the spread and establishment of invasive species. Here we review the literature (especially within the last decade) on ecological approaches that involve biodiversity, biomass, and productivity, three key community/ecosystem variables that reciprocally influence one another. We focus on the common and most feasible ecological practices that can aid in resisting new invasions and/or suppressing the dominance of existing invasive species. We contend that, because of the strong influences from neighboring areas (i.e., as exotic species pools), local restoration and management efforts in the future need to consider the regional context and projected climate changes.  more » « less
Award ID(s):
1638702
PAR ID:
10110985
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Invasive Plant Science and Management
Volume:
11
Issue:
4
ISSN:
1939-7291
Page Range / eLocation ID:
163 to 174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blubaugh, Carmen (Ed.)
    Abstract Ecosystem restoration is a critical component of land management, countering the loss of native biodiversity. Restoration efforts are enhanced by reintroducing naturally occurring ecosystem processes, including disturbances that may impact species characteristics such as niche position or niche size. In grasslands, grazing and fire affect plant diversity and habitat complexity, which potentially influence insect dietary behaviors and thus their contributions to functions like seed and arthropod predation. Using carbon and nitrogen stable isotopes, we characterized variation in the dietary niche of six ground beetle species (Coleoptera: Carabidae) in response to grazing by reintroduced bison and prescribed fire disturbances in twenty tallgrass prairies. Management disturbances did not affect activity density for most beetle species and mean trophic position was mostly unaffected. However, five of six species exhibited increased trophic niche area and breadth with disturbances, indicating a switch to a more generalist diet that incorporated a wider range of food items. The combination of bison and fire impacts may increase vegetation patchiness and heterogeneity, driving these diet changes. Morphological traits and microhabitat preferences might mediate response to disturbances and the resulting heterogeneity. Combining prescribed fire and grazing, which increases plant diversity and vegetation structural diversity, may help beetle communities establish over time and support the ecological functions to which these insects contribute. 
    more » « less
  2. Abstract Animals often shape environmental microbial communities, which can in turn influence animal gut microbiomes. Invasive species in critical habitats may reduce grazing pressure from native species and shift microbial communities. The landlocked coastal ponds, pools, and caves that make up the Hawaiian anchialine ecosystem support an endemic shrimp (Halocaridina rubra) that grazes on diverse benthic microbial communities, including orange cyanobacterial‐bacterial crusts and green algal mats. Here, we asked how shrimp: (1) shape the abundance and composition of microbial communities, (2) respond to invasive fishes, and (3) whether their gut microbiomes are affected by environmental microbial communities. We demonstrate that ecologically relevant levels of shrimp grazing significantly reduce epilithon biomass. Shrimp grazed readily and grew well on both orange crusts and green mat communities. However, individuals from orange crusts were larger, despite crusts having reduced concentrations of key fatty acids. DNA profiling revealed shrimp harbor a resident gut microbiome distinct from the environment, which is relatively simple and stable across space (including habitats with different microbial communities) and time (between wild‐caught individuals and those maintained in the laboratory for >2 yr). DNA profiling also suggests shrimp grazing alters environmental microbial community composition, possibly through selective consumption and/or physical interactions. While this work suggests grazing by endemic shrimp plays a key role in shaping microbial communities in the Hawaiian anchialine ecosystem, the hypothesized drastic ecological shifts resulting from invasive fishes may be an oversimplification as shrimp may largely avoid predation. Moreover, environmental microbial communities may have little influence on shrimp gut microbiomes. 
    more » « less
  3. Abstract Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non‐native species. Although high‐severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants. 
    more » « less
  4. Abstract Global declines of foundation species have reduced ecological function at population, community, and ecosystem levels. Restoration of foundation species promises to counter such losses, despite unknown recovery timelines, undefined benchmarks, and uncertainty about whether restored ecosystems approximate natural ones. Here, we demonstrate through a 15‐year large‐scale experiment in coastal Virginia, USA, that restored oyster reefs can quickly recover multiple ecological functions and match natural reefs. Specifically, abundances of oysters and a key crab mesopredator on restored reefs equaled reference reefs in approximately 6 years, indicating that restoration can initiate rapid, sustained recovery of foundation species and associated consumers. As reefs matured and accrued biomass, they became more temporally stable, suggesting that restoration can increase resilience and may stabilize those ecosystem processes that scale with foundation species biomass. Together, these results demonstrate that restoration can catalyze rapid recovery of imperiled coastal foundation species, reclaim lost community interactions, and help reverse decades of degradation. 
    more » « less
  5. Abstract Restoring ecosystems requires the re-establishment of diverse soil microbial communities that drive critical ecosystem functions. In grasslands, restoration and management require the application of disturbances like fire and grazing. Disturbances can shape microbial taxonomic composition and potentially functional composition as well. We characterized taxonomic and functional gene composition of soil communities using whole genome shotgun metagenomic sequencing to determine how restored soil communities differed from pre-restoration agricultural soils and original remnant soils, how management affects soil microbes, and whether restoration and management affect the number of microbial genes associated with carbohydrate degradation. We found distinct differences in both taxonomic and functional diversity and composition among restored, remnant, and agricultural soils. Remnant soils had low taxonomic and functional richness and diversity, as well as distinct composition, indicating that restoration of agricultural soils does not re-create soil microbial communities that match remnants. Prescribed fire management increased functional diversity, which also was higher in more recently planted restorations. Finally, restored and post-fire soils included high abundances of genes encoding cellulose-degrading enzymes, so restorations and their ongoing management can potentially support functions important in carbon cycling. 
    more » « less