skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Convolutional Bidirectional LSTM Based Transportation Mode Recognition
Traditional machine learning approaches for recognizing modes of transportation rely heavily on hand-crafted feature extraction methods which require domain knowledge. So, we propose a hybrid deep learning model: Deep Convolutional Bidirectional-LSTM (DCBL) which combines convolutional and bidirectional LSTM layers and is trained directly on raw sensor data to predict the transportation modes. We compare our model to the traditional machine learning approaches of training Support Vector Machines and Multilayer Perceptron models on extracted features. In our experiments, DCBL performs better than the feature selection methods in terms of accuracy and simplifies the data processing pipeline. The models are trained on the Sussex-Huawei Locomotion-Transportation (SHL) dataset. The submission of our team, Vahan, to SHL recognition challenge uses an ensemble of DCBL models trained on raw data using the different combination of sensors and window sizes and achieved an F1-score of 0.96 on our test data.  more » « less
Award ID(s):
1640813 1636916
PAR ID:
10111010
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers
Page Range / eLocation ID:
1606 to 1615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anomaly detection in time-series data is an integral part in the context of the Internet of Things (IoT). In particular, with the advent of sophisticated deep and machine learning-based techniques, this line of research has attracted many researchers to develop more accurate anomaly detection algorithms. The problem itself has been a long-lasting challenging problem in security and especially in malware detection and data tampering. The advancement of the IoT paradigm as well as the increasing number of cyber attacks on the networks of the Internet of Things worldwide raises the concern of whether flexible and simple yet accurate anomaly detection techniques exist. In this paper, we investigate the performance of deep learning-based models including recurrent neural network-based Bidirectional LSTM (BI-LSTM), Long Short-Term Memory (LSTM), CNN-based Temporal Convolutional (TCN), and CuDNN-LSTM, which is a fast LSTM implementation supported by CuDNN. In particular, we assess the performance of these models with respect to accuracy and the training time needed to build such models. According to our experiment, using different timestamps (i.e., 15, 20, and 30 min), we observe that in terms of performance, the CuDNN-LSTM model outperforms other models, whereas in terms of training time, the TCN-based model is trained faster. We report the results of experiments in comparing these four models with various look-back values. 
    more » « less
  2. Educational VR may help students by being more engaging or improving retention compared to traditional learning methods. However, a student can get distracted in a VR environment due to stress, mind-wandering, unwanted noise, external alerts, etc. Student eye gaze can be useful for detecting these distraction. We explore deep-learning-based approaches to detect distractions from gaze data. We designed an educational VR environment and trained three deep learning models (CNN, LSTM, and CNN-LSTM) to gauge a student’s distraction level from gaze data, using both supervised and unsupervised learning methods. Our results show that supervised learning provided better test accuracy compared to unsupervised learning methods. 
    more » « less
  3. Predicting the transpiration stream concentration factor (TSCF) and other concentration factors is essential in understanding the plant uptake of organic contaminants. Traditional mechanistic and numerical modeling methods often fail to reliably predict the TSCF. This study developed a hybrid deep model to predict TSCF by integrating convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. This hybrid CNN-LSTM model used eight physicochemical properties of organic contaminants to predict TSCF. The training procedure for this hybrid model was successful. The results indicated the training and test losses for predicting TSCF were both in the same order and close to zero. This study showed that the hybrid CNN-LSTM model can outperform mechanistic models and have higher performances compared to classical machine learning models. Feature importance analysis using extreme gradient boosting highlighted the role and importance of lipophilicity in predicting uptake and translocation of organic contaminants. 
    more » « less
  4. In recent years, the use of convolutional neural networks (CNNs) for raw resting-state electroencephalography (EEG) analysis has grown increasingly common. However, relative to earlier machine learning and deep learning methods with manually extracted features, CNNs for raw EEG analysis present unique problems for explainability. As such, a growing group of methods have been developed that provide insight into the spectral features learned by CNNs. However, spectral power is not the only important form of information within EEG, and the capacity to understand the roles of specific multispectral waveforms identified by CNNs could be very helpful. In this study, we present a novel model visualization-based approach that adapts the traditional CNN architecture to increase interpretability and combines that inherent interpretability with a systematic evaluation of the modelviaa series of novel explainability methods. Our approach evaluates the importance of spectrally distinct first-layer clusters of filters before examining the contributions of identified waveforms and spectra to cluster importance. We evaluate our approach within the context of automated sleep stage classification and find that, for the most part, our explainability results are highly consistent with clinical guidelines. Our approach is the first to systematically evaluate both waveform and spectral feature importance in CNNs trained on resting-state EEG data. 
    more » « less
  5. This works aims to generate realistic wind data in urban spaces, which is essential in developing, testing and ensuring the safe operations of Small Unmanned Aerial Systems (sUAS) using Deep Learning (DL). This provides an alternative to existing turbulence models, specifically aimed at urban air spaces. We devise and utilize a Non-Intrusive Reduced Order Model (NIROM) approach to replicate and realistically predict wind fields in urban spaces. The method uses Large Eddy Simulation data from well-established computational fluid dynamics solvers like OpenFOAM to devise the NIROM. High-fidelity data generated from OpenFOAM is decomposed using Proper Orthogonal Decomposition (POD) into its orthogonal modes and basis. These orthogonal modes obtained over time are trained on specialized Recurrent Neural Networks like Long-Term Short Memory (LSTM) to complete the NIROM formulation. This method combined the traditional reduced order modeling approach with deep learning techniques to devise a framework for easy building and application of Machine Learning (ML) based Reduced Order Models (ROMs). A typical urban morphology subject to the wind is chosen and considered a test case for demonstrating the method. 
    more » « less