skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Data Plane: A Federated Vision for Secure Data in Edge Computing
We propose a federated edge-computing architecture for management of data. Our vision is to enable a service provider model for “data-services”, where a user can enter into economic agreements with an infrastructure maintainer to provide storage and communication of data, without necessarily trusting the infrastructure provider. Toward this vision, we present cryptographically hardened cohesive collections of data items called DataCapsules, and an overview of the underlying federated architecture, called Global Data Plane.  more » « less
Award ID(s):
1838833
PAR ID:
10111285
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Distributed Computing Systems
ISSN:
1063-6927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data privacy has garnered significant attention recently due to diverse applications that store sensitive data in untrusted infrastructure. From a data management point of view, the focus has been on the privacy of stored data and the privacy of querying data at a large scale. However, databases are not solely query engines on static data, they must support updates on dynamically evolving datasets. In this paper, we lay out a vision for privacy-preserving dynamic data. In particular, we focus on dynamic data that might be stored remotely on untrusted providers. Updates arrive at a provider and are verified and incorporated into the database based on predefined constraints. Depending on the application, the content of the stored data, the content of the updates and the constraints may be private or public. We then propose PReVer, a universal framework for managing regulated dynamic data in a privacy-preserving manner. We explore a set of research challenges that PReVer needs to address in order to guarantee the privacy of data, updates, and/or constraints and address the consistent and verifiable execution of updates. This opens the space of privacy-preserving data management from the narrow perspective of private queries on static datasets to the larger space of private management of dynamic data. 
    more » « less
  2. null (Ed.)
    This paper presents the rationale and design of the trust plane for ImPACT, a federated platform for managed sharing of restricted data. Key elements of the architecture include Web-based notaries for credential establishment based on declarative templates for Data Usage Agreements, a federated authorization pipeline, integration of popular services for identity management, and programmable policy based on a logical trust model with a repository of linked certificates. We show how these elements of the trust plane work in concert, and set the ideas in context with principles of federated authorization. A focus and contribution of the paper is to explore limitations of the resulting architecture and tensions among competing design goals. We also point the way toward future extensions, including policy-checked data access from cloud-hosted data enclaves with enhanced defenses against data leakage and exfiltration. 
    more » « less
  3. We examine the intersection of the FAIR principles (Findable, Accessible, Interoperable and Reusable), the challenges and opportunities presented by the aggregation of widely distributed and heterogeneous data about biological and geological specimens, and the use of the Digital Object Architecture (DOA) data model and components as an approach to solving those challenges that offers adherence to the FAIR principles as an integral characteristic. This approach will be prototyped in the Distributed System of Scientific Collections (DiSSCo) project, the pan-European Research Infrastructure which aims to unify over 110 natural science collections across 21 countries. We take each of the FAIR principles, discuss them as requirements in the creation of a seamless virtual collection of bio/geo specimen data, and map those requirements to Digital Object components and facilities such as persistent identification, extended data typing, and the use of an additional level of abstraction to normalize existing heterogeneous data structures. The FAIR principles inform and motivate the work and the DO Architecture provides the technical vision to create the seamless virtual collection vitally needed to address scientific questions of societal importance. 
    more » « less
  4. Pangeo Forge is a new community-driven platform that accelerates science by providing high-level recipe frameworks alongside cloud compute infrastructure for extracting data from provider archives, transforming it into analysis-ready, cloud-optimized (ARCO) data stores, and providing a human- and machine-readable catalog for browsing and loading. In abstracting the scientific domain logic of data recipes from cloud infrastructure concerns, Pangeo Forge aims to open a door for a broader community of scientists to participate in ARCO data production. A wholly open-source platform composed of multiple modular components, Pangeo Forge presents a foundation for the practice of reproducible, cloud-native, big-data ocean, weather, and climate science without relying on proprietary or cloud-vendor-specific tooling. 
    more » « less
  5. In the realm of neuroscience, mapping the three-dimensional (3D) neural circuitry and architecture of the brain is important for advancing our understanding of neural circuit organization and function. This study presents a novel pipeline that transforms mouse brain samples into detailed 3D brain models using a collaborative data analytics platform called “Texera.” The user-friendly Texera platform allows for effective interdisciplinary collaboration between team members in neuroscience, computer vision, and data processing. Our pipeline utilizes the tile images from a serial two-photon tomography/TissueCyte system, then stitches tile images into brain section images, and constructs 3D whole-brain image datasets. The resulting 3D data supports downstream analyses, including 3D whole-brain registration, atlas-based segmentation, cell counting, and high-resolution volumetric visualization. Using this platform, we implemented specialized optimization methods and obtained significant performance enhancement in workflow operations. We expect the neuroscience community can adopt our approach for large-scale image-based data processing and analysis. 
    more » « less