skip to main content

Title: Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review
Background: Bioelectrochemical systems (BESs) are emerging energy-effective and environment-friendly technologies. Different applications of BESs are able to effectively minimize wastes and treat wastewater while simultaneously recovering electricity, biohydrogen and other value-added chemicals via specific redox reactions. Although there are many studies that have greatly advanced the performance of BESs over the last decade, research and reviews on agriculture-relevant applications of BESs are very limited. Considering the increasing demand for food, energy and water due to human population expansion, novel technologies are urgently needed to promote productivity and sustainability in agriculture. Methodology: This review study is based on an extensive literature search regarding agriculture-related BES studies mainly in the last decades (i.e., 2009–2018). The databases used in this review study include Scopus, Google Scholar and Web of Science. The current and future applications of bioelectrochemical technologies in agriculture have been discussed. Findings/Conclusions: BESs have the potential to recover considerable amounts of electric power and energy chemicals from agricultural wastes and wastewater. The recovered energy can be used to reduce the energy input into agricultural systems. Other resources and value-added chemicals such as biofuels, plant nutrients and irrigation water can also be produced in BESs. In addition, BESs may replace unsustainable batteries to power remote sensors or be designed as biosensors for agricultural monitoring. The possible applications to produce food without sunlight and remediate contaminated soils using BESs have also been discussed. At the same time, agricultural wastes can also be processed into construction materials or biochar electrodes/electrocatalysts for reducing the high costs of current BESs. Future studies should evaluate the long-term performance and stability of on-farm BES applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes. 
    more » « less
  2. Highlights Aquatic vegetation-based nutrient recovery offers an alternate approach for treating agricultural wastewater. Microalgae and duckweed can upcycle waste nutrients into valuable bio-based products. Producing feed, fertilizer, and fuel from manure-grown aquatic vegetation promotes a circular N-bioeconomy. Abstract . The massive amounts of nutrients that are currently released into the environment as waste have the potential to be recovered and transformed from a liability into an asset through photosynthesis, industry insight, and ecologically informed engineering design aimed at circularity. Fast-growing aquatic plant-like vegetation such as microalgae and duckweed have the capacity to enable local communities to simultaneously treat their own polluted water and retain nutrients that underlie the productivity of modern agriculture. Not only are they highly effective at upcycling waste nutrients into protein-rich biomass, microalgae and duckweed also offer excellent opportunities to substitute or complement conventional synthetic fertilizers, feedstocks in biorefineries, and livestock feed while simultaneously reducing the energy consumption and greenhouse gas emissions that would otherwise be required for their production and transport to farms. Integrated systems growing microalgae or duckweed on manure or agricultural runoff, and subsequent reuse of the harvested biomass to produce animal feed, soil amendments, and biofuels, present a sustainable approach to advancing circularity in agricultural systems. This article provides a review of past efforts toward advancing the circular nitrogen bioeconomy using microalgae- and duckweed-based technologies to treat, recover, and upcycle nutrients from agricultural waste. The majority of the work with microalgae- and duckweed-based wastewater treatment has been concentrated on municipal and industrial effluents, with <50% of studies focusing on agricultural wastewater. In terms of scale, more than 91% of the microalgae-based studies and 58% of the duckweed-based studies were conducted at laboratory-scale. While the range of nutrient removals achieved using these technologies depends on various factors such as species, light, and media concentrations, 65% to 100% of total N, 82% to 100% of total P, 98% to 100% of NO3-, and 96% to 100% of NH3/NH4+ can be removed by treating wastewater with microalgae. For duckweed, removals of 75% to 98% total N, 81% to 93% total P, 72% to 98% NH3/NH4+, and 57% to 92% NO3- have been reported. Operating conditions such as hydraulic retention time, pH, temperature, and the presence of toxic nutrient levels and competing species in the media should be given due consideration when designing these systems to yield optimum benefits. In addition to in-depth studies and scientific advancements, policies encouraging supply chain development, market penetration, and consumer acceptance of these technologies are vitally needed to overcome challenges and to yield substantial socio-economic and environmental benefits from microalgae- and duckweed-based agricultural wastewater treatment. Keywords: Circular bioeconomy, Duckweed, Manure treatment, Microalgae, Nitrogen, Nutrient recycling, Wastewater treatment. 
    more » « less
  3. The amount of electronic waste (e-waste) globally has doubled in just five years, from approximately 20 million tons to 40 million tons of e-waste generated per year. In 2016, the global amount of e-waste reached an all-time high of 44.7 million tons. E-waste is an invaluable unconventional resource due to its high metal content, as nearly 40% of e-waste is comprised of metals. Unfortunately, the rapid growth of e-waste is alarming due to severe environmental impacts and challenges associated with complex resource recovery that has led to the use of toxic chemicals. Furthermore, there is a very unfortunate ethical issue related to the flow of e-wastes from developed countries to developing countries. At this time, e-waste is often open pit burned and toxic chemicals are used without adequate regulations to recover metals such as copper. The recovered metals are eventually exported back to the developed countries. Thus, the current global circular economy of e-waste is not sustainable in terms of environmental impact as well as creation of ethical dilemmas. Although traditional metallurgical processes can be extended to e-waste treatment technologies, that is not enough. The complexity of e-waste requires the development of a new generation of metallurgical processes that can separate and extract metals from unconventional components such as polymers and a wide range of metals. This review focuses on the science and engineering of both conventional and innovative separation and recovery technologies for e-wastes with special attention being given to the overall sustainability. Physical separation processes, including disassembly, density separation, and magnetic separation, as well as thermal treatment of the polymeric component, such as pyrolysis, are discussed for the separation of metals and non-metals from e-wastes. The subsequent metal recovery processes through pyrometallurgy, hydrometallurgy, and biometallurgy are also discussed in depth. Finally, insights on future research towards sustainable treatment and recovery of e-waste are presented including the use of supercritical CO 2 . 
    more » « less
  4. Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability. 
    more » « less
  5. Abstract Engineering innovations—including those in heat and mass transfer—are needed to provide food, water, and power to a growing population (i.e., projected to be 9.8 × 109 by 2050) with limited resources. The interweaving of these resources is embodied in the food, energy, and water (FEW) nexus. This review paper focuses on heat and mass transfer applications which involve at least two aspects of the FEW nexus. Energy and water topics include energy extraction of natural gas hydrates and shale gas; power production (e.g., nuclear and solar); power plant cooling (e.g., wet, dry, and hybrid cooling); water desalination and purification; and building energy/water use, including heating, ventilation, air conditioning, and refrigeration technology. Subsequently, this review considers agricultural thermal fluids applications, such as the food and water nexus (e.g., evapotranspiration and evaporation) and the FEW nexus (e.g., greenhouses and food storage, including granaries and freezing/drying). As part of this review, over 100 review papers on thermal and fluid topics relevant to the FEW nexus were tabulated and over 350 research journal articles were discussed. Each section discusses previous research and highlights future opportunities regarding heat and mass transfer research. Several cross-cutting themes emerged from the literature and represent future directions for thermal fluids research: the need for fundamental, thermal fluids knowledge; scaling up from the laboratory to large-scale, integrated systems; increasing economic viability; and increasing efficiency when utilizing resources, especially using waste products. 
    more » « less