skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing SLAM Benchmarks and Methods for the Robust Perception Age
The diversity of SLAM benchmarks affords extensive testing of SLAM algorithms to understand their performance, individually or in relative terms. The ad-hoc creation of these benchmarks does not necessarily illuminate the particular weak points of a SLAM algorithm when performance is evaluated. In this paper, we propose to use a decision tree to identify challenging benchmark properties for state-of-the-art SLAM algorithms and important components within the SLAM pipeline regarding their ability to handle these challenges. Establishing what factors of a particular sequence lead to track failure or degradation relative to these characteristics is important if we are to arrive at a strong understanding for the core computational needs of a robust SLAM algorithm. Likewise, we argue that it is important to profile the computational performance of the individual SLAM components for use when benchmarking. In particular, we advocate the use of time-dilation during ROS bag playback, or what we refer to as slo-mo playback. Using slo-mo to benchmark SLAM instantiations can provide clues to how SLAM implementations should be improved at the computational component level. Three prevalent VO/SLAM algorithms and two low-latency algorithms of our own are tested on selected typical sequences, which are generated from benchmark characterization, to further demonstrate the benefits achieved from computationally efficient components.  more » « less
Award ID(s):
1816138
PAR ID:
10111563
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICRA Workshop on SLAM Benchmarking
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work attempts to answer two problems. (1) Can we use the odometry information from two different Simultaneous Localization And Mapping (SLAM) algorithms to get a better estimate of the odometry? and (2) What if one of the SLAM algorithms gets affected by shot noise or by attack vectors, and can we resolve this situation? To answer the first question we focus on fusing odometries from Lidar-based SLAM and Visualbased SLAM using the Extended Kalman Filter (EKF) algorithm. The second question is answered by introducing the Maximum Correntropy Criterion - Extended Kalman Filter (MCC-EKF), which assists in removing/minimizing shot noise or attack vectors injected into the system. We manually simulate the shot noise and see how our system responds to the noise vectors. We also evaluate our approach on KITTI dataset for self-driving cars. 
    more » « less
  2. The Problem-Based Benchmark Suite (PBBS) is a set of benchmark problems designed for comparing algorithms, implementations and platforms. For each problem, the suite defines the problem in terms of the input-output relationship, and supplies a set of input instances along with input generators, a default implementation, code for checking correctness or accuracy, and a timing harness. The suite makes it possible to compare different algorithms, platforms (e.g. GPU vs CPU), and implementations using different programming languages or libraries. The purpose is to better understand how well a wide variety of problems parallelize, and what techniques/algorithms are most effective. The suite was first announced in 2012 with 14 benchmark problems. Here we describe some significant updates. In particular, we have added nine new benchmarks from a mix of problems in text processing, computational geometry and machine learning. We have further optimized the default implementations; several are the fastest available for multicore CPUs, often achieving near perfect speedup on the 72 core machine we test them on. The suite now also supplies significantly larger default test instances, as well as a broader variety, with many derived from real-world data. 
    more » « less
  3. null (Ed.)
    Place recognition is a core component of Simultaneous Localization and Mapping (SLAM) algorithms. Particularly in visual SLAM systems, previously-visited places are recognized by measuring the appearance similarity between images representing these locations. However, such approaches are sensitive to visual appearance change and also can be computationally expensive. In this paper, we propose an alternative approach adapting LiDAR descriptors for 3D points obtained from stereo-visual odometry for place recognition. 3D points are potentially more reliable than 2D visual cues (e.g., 2D features) against environmental changes (e.g., variable illumination) and this may benefit visual SLAM systems in long-term deployment scenarios. Stereo-visual odometry generates 3D points with an absolute scale, which enables us to use LiDAR descriptors for place recognition with high computational efficiency. Through extensive evaluations on standard benchmark datasets, we demonstrate the accuracy, efficiency, and robustness of using 3D points for place recognition over 2D methods. 
    more » « less
  4. Evaluations—encompassing computational evaluations, benchmarks and user studies—are essential tools for validating the performance and applicability of graph and network layout algorithms (also known as graph drawing). These evaluations not only offer significant insights into an algorithm's performance and capabilities, but also assist the reader in determining if the algorithm is suitable for a specific purpose, such as handling graphs with a high volume of nodes or dense graphs. Unfortunately, there is no standard approach for evaluating layout algorithms. Prior work holds a ‘Wild West’ of diverse benchmark datasets and data characteristics, as well as varied evaluation metrics and ways to report results. It is often difficult to compare layout algorithms without first implementing them and then running your own evaluation. In this systematic review, we delve into the myriad of methodologies employed to conduct evaluations—the utilized techniques, reported outcomes and the pros and cons of choosing one approach over another. Our examination extends beyond computational evaluations, encompassing user‐centric evaluations, thus presenting a comprehensive understanding of algorithm validation. This systematic review—and its accompanying website—guides readers through evaluation types, the types of results reported, and the available benchmark datasets and their data characteristics. Our objective is to provide a valuable resource for readers to understand and effectively apply various evaluation methods for graph layout algorithms. A free copy of this paper and all supplemental material is available at osf.io, and the categorized papers are accessible on our website at https://visdunneright.github.io/gd-comp-eval/ 
    more » « less
  5. Many computational tasks can be naturally expressed as a composition of a DNN followed by a program written in a traditional programming language or an API call to an LLM. We call such composites "neural programs" and focus on the problem of learning the DNN parameters when the training data consist of end-to-end input-output labels for the composite. When the program is written in a differentiable logic programming language, techniques from neurosymbolic learning are applicable, but in general, the learning for neural programs requires estimating the gradients of black-box components. We present an algorithm for learning neural programs, called ISED, that only relies on input-output samples of black-box components. For evaluation, we introduce new benchmarks that involve calls to modern LLMs such as GPT-4 and also consider benchmarks from the neurosymbolic learning literature. Our evaluation shows that for the latter benchmarks, ISED has comparable performance to state-of-the-art neurosymbolic frameworks. For the former, we use adaptations of prior work on gradient approximations of black-box components as a baseline, and show that ISED achieves comparable accuracy but in a more data- and sample-efficient manner. 
    more » « less