Recovering rigid registration between successive camera poses lies at the heart of 3D reconstruction, SLAM and visual odometry. Registration relies on the ability to compute discriminative 2D features in successive camera images for determining feature correspondences, which is very challenging in feature-poor environments, i.e. low-texture and/or low-light environments. In this paper, we aim to address the challenge of recovering rigid registration between successive camera poses in feature-poor environments in a Visual Inertial Odometry (VIO) setting. In addition to inertial sensing, we instrument a small aerial robot with an RGBD camera and propose a framework that unifies the incorporation of 3D geometric entities: points, lines, and planes. The tracked 3D geometric entities provide constraints in an Extended Kalman Filtering framework. We show that by directly exploiting 3D geometric entities, we can achieve improved registration. We demonstrate our approach on different texture-poor environments, with some containing only flat texture-less surfaces providing essentially no 2D features for tracking. In addition, we evaluate how the addition of different 3D geometric entities contributes to improved pose estimation by comparing an estimated pose trajectory to a ground truth pose trajectory obtained from a motion capture system. We consider computationally efficient methods for detecting 3D points, lines and planes, since our goal is to implement our approach on small mobile robots, such as drones.
more »
« less
A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR Descriptors
Place recognition is a core component of Simultaneous Localization and Mapping (SLAM) algorithms. Particularly in visual SLAM systems, previously-visited places are recognized by measuring the appearance similarity between images representing these locations. However, such approaches are sensitive to visual appearance change and also can be computationally expensive. In this paper, we propose an alternative approach adapting LiDAR descriptors for 3D points obtained from stereo-visual odometry for place recognition. 3D points are potentially more reliable than 2D visual cues (e.g., 2D features) against environmental changes (e.g., variable illumination) and this may benefit visual SLAM systems in long-term deployment scenarios. Stereo-visual odometry generates 3D points with an absolute scale, which enables us to use LiDAR descriptors for place recognition with high computational efficiency. Through extensive evaluations on standard benchmark datasets, we demonstrate the accuracy, efficiency, and robustness of using 3D points for place recognition over 2D methods.
more »
« less
- Award ID(s):
- 1637875
- PAR ID:
- 10297589
- Date Published:
- Journal Name:
- 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Page Range / eLocation ID:
- 5893 to 5900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Visual place recognition is essential for large-scale simultaneous localization and mapping (SLAM). Long-term robot operations across different time of the days, months, and seasons introduce new challenges from significant environment appearance variations. In this paper, we propose a novel method to learn a location representation that can integrate the semantic landmarks of a place with its holistic representation. To promote the robustness of our new model against the drastic appearance variations due to long-term visual changes, we formulate our objective to use non-squared ℓ2-norm distances, which leads to a difficult optimization problem that minimizes the ratio of the ℓ2,1-norms of matrices. To solve our objective, we derive a new efficient iterative algorithm, whose convergence is rigorously guaranteed by theory. In addition, because our solution is strictly orthogonal, the learned location representations can have better place recognition capabilities. We evaluate the proposed method using two large-scale benchmark data sets, the CMU-VL and Nordland data sets. Experimental results have validated the effectiveness of our new method in long-term visual place recognition applications.more » « less
-
null (Ed.)This work attempts to answer two problems. (1) Can we use the odometry information from two different Simultaneous Localization And Mapping (SLAM) algorithms to get a better estimate of the odometry? and (2) What if one of the SLAM algorithms gets affected by shot noise or by attack vectors, and can we resolve this situation? To answer the first question we focus on fusing odometries from Lidar-based SLAM and Visualbased SLAM using the Extended Kalman Filter (EKF) algorithm. The second question is answered by introducing the Maximum Correntropy Criterion - Extended Kalman Filter (MCC-EKF), which assists in removing/minimizing shot noise or attack vectors injected into the system. We manually simulate the shot noise and see how our system responds to the noise vectors. We also evaluate our approach on KITTI dataset for self-driving cars.more » « less
-
Creating cave maps is an essential part of cave research. Traditional cartographic efforts are extremely time consuming and subjective, motivating the development of new techniques using terrestrial lidar scanners and mobile lidar systems. However, processing the large point clouds from these scanners to produce detailed, yet manageable “maps” remains a challenge. In this work, we present a methodology for synthesizing a basemap representing the cave floor from large scale point clouds, based on a case study of a SLAM-based lidar data acquisition from a cave system in the archaeological site of Las Cuevas, Belize. In 4 days of fieldwork, the 335 m length of the cave system was scanned, resulting in a point cloud of 4.1 billion points, with 1.6 billion points classified as part of the cave floor. This point cloud was processed to produce a basemap that can be used in GIS, where natural and anthropogenic features are clearly visible and can be traced to create accurate 2D maps similar to traditional cartography.more » « less
-
null (Ed.)Visual-inertial SLAM is essential for robot navigation in GPS-denied environments, e.g. indoor, underground. Conventionally, the performance of visual-inertial SLAM is evaluated with open-loop analysis, with a focus on the drift level of SLAM systems. In this paper, we raise the question on the importance of visual estimation latency in closed-loop navigation tasks, such as accurate trajectory tracking. To understand the impact of both drift and latency on visualinertial SLAM systems, a closed-loop benchmarking simulation is conducted, where a robot is commanded to follow a desired trajectory using the feedback from visual-inertial estimation. By extensively evaluating the trajectory tracking performance of representative state-of-the-art visual-inertial SLAM systems, we reveal the importance of latency reduction in visual estimation module of these systems. The findings suggest directions of future improvements for visual-inertial SLAM.more » « less