skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Falcon: Balancing Interactive Latency and Resolution Sensitivity for Scalable Linked Visualizations
We contribute user-centered prefetching and indexing methods that provide low-latency interactions across linked visualizations, enabling cold-start exploration of billion-record datasets. We implement our methods in Falcon, a web-based system that makes principled trade-offs between latency and resolution to optimize brushing and view switching times. To optimize latency-sensitive brushing actions, Falcon reindexes data upon changes to the active view a user is brushing in. To limit view switching times, Falcon initially loads reduced interactive resolutions, then progressively improves them. Benchmarks show that Falcon sustains real-time interactivity of 50fps for pixel-level brushing and linking across multiple visualizations with no costly precomputation. We show constant brushing performance regardless of data size on datasets ranging from millions of records in the browser to billions when connected to a backing database system.  more » « less
Award ID(s):
1740996
PAR ID:
10111610
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CHI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a prototype virtual reality user interface for robot teleoperation that supports high-level specification of 3D object positions and orientations in remote assembly tasks. Users interact with virtual replicas of task objects. They asynchronously assign multiple goals in the form of 6DoF destination poses without needing to be familiar with specific robots and their capabilities, and manage and monitor the execution of these goals. The user interface employs two different spatiotemporal visualizations for assigned goals: one represents all goals within the user’s workspace (Aggregated View), while the other depicts each goal within a separate world in miniature (Timeline View). We conducted a user study of the interface without the robot system to compare how these visualizations affect user efficiency and task load. The results show that while the Aggregated View helped the participants finish the task faster, the participants preferred the Timeline View. 
    more » « less
  2. We present a novel multi-level representation of time series called OM3 that facilitates efficient interactive progressive visualization of large data stored in a database and supports various interactions such as resizing, panning, zooming, and visual query. Based on our proposed line-segment aggregation, this representation can produce error-free line visualizations that preserve the shape of a time series in windows of arbitrary sizes. To reduce the interaction latency, we develop an incremental tree-based query strategy to support progressive visualizations, allowing a finer control on the accuracy-time tradeoff. We quantitatively compare OM3 with state-of-the-art methods, including a method implemented on a leading time-series database InfluxDB, in two settings with databases residing either in the local area network or on the cloud. Results show that OM^3 maintains a low latency within 300~ms on the web browser and a high data reduction ratio regardless of the data size (ranging from millions to billions of records), achieving around 1,000 times faster than the state-of-the-art methods on the largest dataset experimented with. 
    more » « less
  3. Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive data, and uploads the encrypted data to the server that directly processes the encrypted data without decryption, and returns the encrypted result to the client. The clients' data privacy is preserved since only the client has the private key. Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy computational overheads. The state-of-the-art HENNs adopt ciphertext packing techniques to reduce homomorphic multiplications by packing multiple messages into one single ciphertext. Nevertheless, rotations are required in these HENNs to implement the sum of the elements within the same ciphertext. We observed that HENNs have to pay significant computing overhead on rotations, and each of rotations is ∼10× more expensive than homomorphic multiplications between ciphertext and plaintext. So the massive rotations have become a primary obstacle of efficient HENNs. In this paper, we propose a fast, frequency-domain deep neural network called Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomorphic Discrete Fourier Transform (HDFT) using block-circulant matrices to homomorphically support spectral operations. We also propose several efficient methods to reduce inference latency, including Homomorphic Spectral Convolution and Homomorphic Spectral Fully Connected operations by combing the batched HE and block-circulant matrices. Our experimental results show Falcon achieves the state-of-the-art inference accuracy and reduces the inference latency by 45.45%∼85.34% over prior HENNs on MNIST and CIFAR-10. 
    more » « less
  4. Description / Abstract: In order to effectively provide INaaS (Inference-as-a-Service) for AI applications in resource-limited cloud environments, two major challenges must be overcome: achieving low latency and providing multi-tenancy. This paper presents EIF (Efficient INaaS Framework), which uses a heterogeneous CPU-FPGA architecture to provide three methods to address these challenges (1) spatial multiplexing via software-hardware co-design virtualization techniques, (2) temporal multiplexing that exploits the sparsity of neural-net models, and (3) streaming-mode inference which overlaps data transfer and computation. The prototype EIF is implemented on an Intel PAC (shared-memory CPU-FPGA) platform. For evaluation, 12 types of DNN models were used as benchmarks, with different size and sparsity. Based on these experiments, we show that in EIF, the temporal multiplexing technique can improve the user density of an AI Accelerator Unit from 2$$\times$$ to 6$$\times$$, with marginal performance degradation. In the prototype system, the spatial multiplexing technique supports eight AI Accelerators Unit on one FPGA. By using a streaming mode based on a Mediated Pass-Through architecture, EIF can overcome the FPGA on-chip memory limitation to improve multi-tenancy and optimize the latency of INaaS. To further enhance INaaS, EIF utilizes the MapReduce function to provide a more flexible QoS. Together with the temporal/spatial multiplexing techniques, EIF can support 48 users simultaneously on a single FPGA board in our prototype system. In all tested benchmarks, cold-start latency accounts for only approximately 5\% of the total response time. 
    more » « less
  5. Advanced manufacturing creates increasingly complex objects with material compositions that are often difficult to characterize by a single modality. Our collaborating domain scientists are going beyond traditional methods by employing both X-ray and neutron computed tomography to obtain complementary representations expected to better resolve material boundaries. However, the use of two modalities creates its own challenges for visualization, requiring either complex adjustments of bimodal transfer functions or the need for multiple views. Together with experts in nondestructive evaluation, we designed a novel interactive bimodal visualization approach to create a combined view of the co-registered X-ray and neutron acquisitions of industrial objects. Using an automatic topological segmentation of the bivariate histogram of X-ray and neutron values as a starting point, the system provides a simple yet effective interface to easily create, explore, and adjust a bimodal visualization. We propose a widget with simple brushing interactions that enables the user to quickly correct the segmented histogram results. Our semiautomated system enables domain experts to intuitively explore large bimodal datasets without the need for either advanced segmentation algorithms or knowledge of visualization techniques. We demonstrate our approach using synthetic examples, industrial phantom objects created to stress bimodal scanning techniques, and real-world objects, and we discuss expert feedback. 
    more » « less