A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.
As a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session.
Analyses of variance across different scenarios show that disjunctive and time-indexed more »
Though it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.
- Publication Date:
- NSF-PAR ID:
- 10380511
- Journal Name:
- Journal of NeuroEngineering and Rehabilitation
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1743-0003
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the samemore »
-
Abstract Background There are plenty of studies investigating the disparity of payer status in accessing to care. However, most studies are either disease-specific or cohort-specific. Quantifying the disparity from the level of facility through a large controlled study are rare. This study aims to examine how the payer status affects patient hospitalization from the perspective of a facility.
Methods We extracted all patients with visiting record in a medical center between 5/1/2009-4/30/2014, and then linked the outpatient and inpatient records three year before target admission time to patients. We conduct a retrospective observational study using a conditional logistic regression methodology. To control the illness of patients with different diseases in training the model, we construct a three-dimension variable with data stratification technology. The model is validated on a dataset distinct from the one used for training.
Results Patients covered by private insurance or uninsured are less likely to be hospitalized than patients insured by government. For uninsured patients, inequity in access to hospitalization is observed. The value of standardized coefficients indicates that government-sponsored insurance has the greatest impact on improving patients’ hospitalization.
Conclusion Attention is needed on improving the access to care for uninsured patients. Also, basic preventive care services should be enhanced, especiallymore »
-
Spatial reasoning skills have been linked to success in STEM and are considered an important part of geoscience problem solving. Most agree that these are a group of skills rather than a single ability, though there is no agreement on the full list of constituent skills. Few studies have attempted to isolate specific spatial skills for deliberate training. We conducted an experiment to isolate and train the skill of recognizing horizontal (a crucial component in measuring the orientation of planes) using a dedicated Virtual Reality (VR) module. We recruited 21 undergraduate students from natural science and social science majors for the study, which consisted of a pretest, 15-minute training, and posttest. The pre- and posttests consisted of a short multiple choice vocabulary quiz, 5 hand-drawn and 5 multiple choice Water Level Task (WLT) questions, and the Vandenberg and Kuse Mental Rotation Task (MRT). Participants were sorted based on pre-test Water Level Task scores, only those with scores <80% were placed in an intervention group and randomly assigned to training, either in VR (experimental) or on paper (standard), of about 15 minutes. The high-scoring participants received no training (comparison). All three groups of participants completed a posttest after the training (ifmore »
-
Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each taskmore »
-
Background Over half of US adults have at least one chronic disease, including obesity. Although physical activity is an important component of chronic disease self-management, few reach the recommended physical activity goals. Individuals who identify as racial and ethnic minorities are disproportionally affected by chronic diseases and physical inactivity. Interventions using consumer-based wearable devices have shown promise for increasing physical activity among patients with chronic diseases; however, populations with the most to gain, such as minorities, have been poorly represented to date. Objective This study aims to assess the feasibility, acceptability, and preliminary outcomes of an 8-week text-based coaching and Fitbit program aimed at increasing the number of steps in a predominantly overweight ethnic minority population. Methods Overweight patients (BMI >25 kg/m2) were recruited from an internal medicine clinic located in an inner-city academic medical center. Fitbit devices were provided. Using 2-way SMS text messaging, health coaches (HCs) guided patients to establish weekly step goals that were specific, measurable, attainable, realistic, and time-bound. SMS text messaging and Fitbit activities were managed using a custom-designed app. Program feasibility was assessed via the recruitment rate, retention rate (the proportion of eligible participants completing the 8-week program), and patient engagement (based on themore »