Dissolution of CuO nanoparticles, releasing Cu ions, is a primary mechanism of Cu interaction in the rooting zone of plants. CuO dissolution is sometimes incorrectly considered negligible at high pH, since complexation of Cu with dissolved organic matter may enhance nanoparticle dissolution. Therefore data on the effects of plant-microbial-soil interactions on nanoparticle dissolution, particularly in alkaline soils, are needed. Dissolution of CuO nanoparticles (100 mg kg −1 Cu) was studied in sand supplemented with factorial combinations of wheat growth, a root-colonizing bacterium, and saturated paste extracts (SPEs) from three alkaline, calcareous soils. In control sand systems with 3.34 mM Ca(NO 3 ) 2 solution, dissolved Cu was low (266 μg L −1 Cu). Addition of dissolved organic matter via wheat root metabolites and/or soil SPEs increased dissolved Cu to 795–6250 μg L −1 Cu. Dissolution was correlated with dissolved organic carbon ( R = 0.916, p < 0.0001). Ligands >3 kDa, presumably fulvic acid from the SPEs, complexed Cu driving solubility; the addition of plant exudates further increased solubility 1.5–3.5×. The root-colonizing bacterium decreased dissolved Cu in sand pore waters from planted systems due to metabolism of root exudates. Batch solubility studies (10 mg L −1 Cu) with the soil SPEs and defined solutions containing bicarbonate or fulvic acid confirmed elevated CuO nanoparticle solubility at >7.5 pH. Nanoparticle dissolution was suppressed in batch experiments compared to sand, via nanoparticle organic matter coating or homoconjugation of dissolved organic matter. Alterations of CuO nanoparticles by soil organic matter, plant exudates, and bacteria will affect dissolution and bioavailability of the CuO nanoparticles in alkaline soils.
more »
« less
Emerging investigator series: quantification of multiwall carbon nanotubes in plant tissues with spectroscopic analysis
If agricultural plants are exposed to carbon nanotubes (CNTs), they can potentially take up the CNTs from growth media and translocate them to their different tissues. In addition, agricultural application of CNTs recently attracted increasing attention, as they could promote germination, enhance crop yield, and exhibit other benefits. For evaluating the environmental effects of CNTs and optimizing their agricultural application, it is essential to quantify CNTs in plant tissues. In this study, pristine (p-) and carboxyl-functionalized (c-) multiwall CNTs (MWCNTs) were extracted from plant tissues by a sequential digestion with nitric acid (HNO 3 ) and sulfuric acid (H 2 SO 4 ). The extracted MWCNTs were stabilized with nonionic surfactant Triton X-100 and analyzed with ultraviolet-visible (UV-vis) spectroscopic analysis to measure the concentration of the MWCNTs in plant (lettuce) tissues. The MWCNT concentration was linearly correlated with the absorbance at 800 nm. The detection limit for p- and c-MWCNTs was achieved at 0.10–0.12, 0.070–0.081, 0.019–0.18 μg mg −1 for leaf, stem, and root tissues, respectively. The developed method was applied for lettuce ( Lactuca sativa , cv. black seeded Simpson) hydroponically grown with 5, 10, 20 mg L −1 of p-MWCNTs and c-MWCNTs in the culture solution. We detected 0.21 ± 0.05–4.57 ± 0.39 μg mg −1 p-MWCNTs and 0.20 ± 0.17–0.75 ± 0.25 μg mg −1 c-MWCNTs in the lettuce roots, positively correlated with the dose of CNTs in solution. We have developed a method for rapid quantification of CNTs in plant tissues using a widely-accessible technique, which can enable reliable analysis of CNTs in plant tissues and provide critical information for evaluating the environmental implications and managing agricultural application of CNTs.
more »
« less
- Award ID(s):
- 1808372
- PAR ID:
- 10111716
- Date Published:
- Journal Name:
- Environmental Science: Nano
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2051-8153
- Page Range / eLocation ID:
- 380 to 387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil lead (Pb) contamination is a major environmental and public health risk. Switchgrass (Panicum virgatum), a second-generation biofuel crop, is potentially useful for the long-term phytoremediation and phytoextraction of Pb contaminated soils. We evaluated the efficacy of a coordinated foliar application of plant growth regulators and soil fungicide and a chelator in order to optimize phytoextraction. Plants were grown in soil culture under controlled conditions. First, three exogenous nitric oxide (NO) donors were evaluated at multiple concentrations: (1) S-nitroso-N-acetylpenicillamine (SNAP); (2) sodium nitroprusside (SNP); and (3) S-nitrosoglutathione (GSNO). Second, the effect of SNP (0.5 μM) was examined further with the model chelate EDTA and the soil fungicide propicanazole. Third, a combined foliar application of SNP and gibberellic acid (GA3) was examined with EDTA and propicanazole. The soil application of propiconazole (a broad-spectrum fungicides) reduced AMF colonization and allowed greater Pb phytoextraction. The foliar application of SNP resulted in similar concentrations of Pb (roots and foliage) to plants that were challenged with chelates and soil fungicides. The combined foliar application of SNP and GA3 resulted in significantly greater average Pb concentration (243 mg kg−1) in plant foliage in comparison to control plants (182 mg kg−1) and plants treated with GA3 alone (202 mg kg−1). The combined foliar application of SNP and GA3 resulted in the greatest phytoextraction efficiency and could therefore potentially improve phytoextraction by switchgrass grown in Pb contaminated soils.more » « less
-
Starch is a polysaccharide that is abundantly found in nature and is generally used as an energy source and energy storage in many biological and environmental processes. Naturally, starch tends to be in miniscule amounts, creating a necessity for quantitative analysis of starch in low-concentration samples. Existing studies that are based on the spectrophotometric detection of starch using the colorful amylose–iodine complex lack a detailed description of the analytical procedure and important parameters. In the present study, this spectrophotometry method was optimized, tested, and applied to studying starch content of atmospheric bioaerosols such as pollen, fungi, bacteria, and algae, whose chemical composition is not well known. Different experimental parameters, including pH, iodine solution concentrations, and starch solution stability, were tested, and method detection limit (MDL) and limit of quantification (LOQ) were determined at 590 nm. It was found that the highest spectrophotometry signal for the same starch concentration occurs at pH 6.0, with an iodine reagent concentration of 0.2%. The MDL was determined to be 0.22 μg/mL, with an LOQ of 0.79 μg/mL. This optimized method was successfully tested on bioaerosols and can be used to determine starch content in low-concentration samples. Starch content in bioaerosols ranged from 0.45 ± 0.05 (in bacteria) to 4.3 ± 0.06 μg/mg (in fungi).more » « less
-
Carbon dioxide (CO2) concentrations affect the growth rate of plants by increasing photosynthesis. Increasing CO2 in controlled environment agriculture (CEA) provides a means to boost yield or decrease daily light integral (DLI) requirements, potentially increasing profitability of growing operations. However, increases in carbon dioxide concentrations are often correlated with decreased nutritional content of crops. The objectives of this experiment were to quantify the effects of carbon dioxide on the growth, morphology, and nutritional content of two lettuce varieties, ‘Rex’ and ‘Rouxai’ under four CO2 concentrations. Applied CO2 treatments were 400, 800, 1200, and 1600 ppm in controlled environment chambers with identical DLI. Lettuce was germinated for eight days in a greenhouse, then transplanted into potting mix and placed in a growth chamber illuminated by fluorescent lights. After 21 days, lettuce was destructively harvested, and fresh weight and plant volume were measured. Anthocyanins, xanthophylls, chlorophyll, and mineral concentration were measured. The lettuce fresh and dry weight increased with increasing CO2 concentrations, with the greatest increases observed between 400 and 800 ppm, and diminishing increases as CO2 concentration further increased to 1200 and 1600 ppm. Violaxanthin was observed to decrease in ‘Rouxai’ with increasing CO2 concentration. Largely, no significant differences were observed in lutein, anthocyanins, and mineral content. Overall, increasing concentrations of carbon dioxide can significantly increase the yield for lettuce in controlled environments, while not significantly reducing many of the nutritional components.more » « less
-
The aim of this work was to study the applicability of infrared spectroscopy combined with machine learning techniques to evaluate the uptake and distribution of gold nanoparticles (AuNPs) and single-walled carbon nanotubes (CNTs) in Cicer arietinum L. (chickpea). Obtained spectral data revealed that the uptake of AuNPs and CNTs by the C. arietinum seedlings’ root resulted in the accumulation of AuNPs and CNTs at stem and leaf parts, which consequently led to the heterogeneous distribution of nanoparticles. principal component analysis and support vector machine classification were applied to assess its usefulness for evaluating the results obtained using the attenuated total reflectance-Fourier transform infrared spectroscopy method of C. arietinum plant grown at different conditions. Specific wavenumbers that could classify the different nanoparticle constituents of C. arietinum plant extracts according to their ATR-FTIR spectra were identified within three specific regions: 450–503 cm−1, 750–870 cm−1, and 1022–1218 cm−1, based on larger PCA loadings of C. arietinum ATR-FTIR spectra with distinct spectral differences between samples of interest. The current work paves a path to the future fabrication strategies for AuNPs and single-walled CNTs via plant-based routes and highlights the diversity of the applications of these materials in bio-nanotechnology. These results indicate the importance of family-plant selection, choice of methods, and pathways for the efficient biomolecule delivery, drug cargo, and optimal conditions in the wide spectrum of bioapplications.more » « less
An official website of the United States government

