- Award ID(s):
- 1739163
- PAR ID:
- 10409928
- Date Published:
- Journal Name:
- Horticulturae
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2311-7524
- Page Range / eLocation ID:
- 820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Rising atmospheric carbon dioxide (CO2) levels can impact plant photosynthesis and productivity and threaten food security, especially when combined with additional environmental stressors. This study addresses the effects of elevated CO2 in combination with low nutrient supply on Lemna minor (common duckweed). We quantified plant growth rate and nutritional quality (protein content) and evaluated whether any adverse effects of elevated CO2, low nutrients, or the combination of the two could be mitigated by plant-microbe interaction. Plants were grown under controlled conditions and were either uninoculated or inoculated with microorganisms from a local pond that supported L. minor populations. Under low nutrients in combination with high CO2, growth (plant area expansion rate) decreased and biomass accumulation increased, albeit with lower nutritional quality (lower percentage of protein per plant biomass). Inoculation with plant-associated microorganisms restored area expansion rate and further stimulated biomass accumulation while supporting a high protein-to-biomass ratio and, thus, a high nutritional quality. These findings indicate that plant-microbe interaction can support a higher nutritional quality of plant biomass under elevated atmospheric CO2 levels, an important finding for both human and non-human consumers during a time of rapid environmental change.more » « less
-
Adams, Henry (Ed.)
Abstract The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future.
-
Extensive floodplains and numerous lakes in the Amazon basin are well suited to examine the role of floodable lands within the context of the sources and processing of carbon within inland waters. We measured diel, seasonal and inter-annual variations of carbon dioxide concentrations and related environmental variables in open water and flooded vegetation and estimated the extension of these habitats using remote sensing in a representative central Amazon floodplain lake, Lake Janauacá. Depth-averaged values of CO2 in the open water of the lake, 157± 91 µM (mean ± SD), were less than those in an embayment near aquatic vegetation, 285±116 µM, and were variable over 24-h periods at both sites. Within floating herbaceous plant mats, mean concentration (without one outlier) was 275±77 µM and in flooded forests mean concentration was 217±78 µM. Variability in CO2 concentrations in open water resulted from changes in the extent of inundation and exchange with vegetated habitats. The best statistical model, including CO2 in aquatic plant mats, Secchi depth, rate of change in water level and chlorophyll concentrations, explained around 90% of the variability in CO2 concentration. Three-dimensional hydrodynamic modeling demonstrated that diel differences in water temperature between plant mats and open water and basin-scale motions caused lateral exchanges of CO2 linking vegetated habitats to open water. Our findings extend understanding of CO2 in tropical lakes and floodplains with measurements and models that emphasize the importance of flooded forests and aquatic herbaceous plants fringing floodplain lakes as sources of carbon dioxide to the open waters.more » « less
-
Abstract Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth system models. Centered on the time of carbon dioxide doubling, the multi-model mean percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide concentrations, under fixed 1850 land-use conditions). A substantial increase is associated with enhanced vegetation growth due to carbon dioxide biogeochemical impacts at 60.1 ± 46.9%. In contrast, carbon dioxide radiative impacts, including warming and drying, yield a negligible response of fire carbon emissions at 1.7 ± 9.4%. Although model representation of fire processes remains uncertain, our results show the importance of vegetation dynamics to future increases in fire activity under increasing carbon dioxide, with potentially important policy implications.
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize data sets and methodologies toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, withfossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission(including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1(40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with aBIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low orsinks were too high). The global atmospheric CO2 concentration averaged over2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest anincrease in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %)globally and atmospheric CO2 concentration reaching 417.2 ppm, morethan 50 % above pre-industrial levels (around 278 ppm). Overall, the meanand trend in the components of the global carbon budget are consistentlyestimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadalvariability in CO2 fluxes. Comparison of estimates from multipleapproaches and observations shows (1) a persistent large uncertainty in theestimate of land-use change emissions, (2) a low agreement between thedifferent methods on the magnitude of the land CO2 flux in the northernextratropics, and (3) a discrepancy between the different methods on thestrength of the ocean sink over the last decade. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set. The data presented inthis work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).more » « less