skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Era in Spatial Data Recording: Low-Cost GNSS
Archaeologists have long recognized that precise three-dimensional coordinates are critical for recording objects and features across sites and landscapes. Traditionally, for relatively small areas, an optical transit or, more recently, an electronic distance measurement device (EDM) has been used to acquire these three-dimensional points. While effective, such systems have significant limitations in that they require a clear line of site. Real-time kinematic (RTK) GPS/GNSS systems (Global Positioning System/Global Navigation Satellite Systems) have been available for well over a decade, and can provide quick and accurate point measurements over a wide area without many of the limitation of older technologies. The cost of such systems, however, has generally been prohibitive for archaeologists, and so their use has been rare. Recently, a new generation of low-cost systems has become available, making this technology more accessible to a wider user base. This article describes the use, accuracy, and limitations of one such low-cost system, the Emlid Reach RS, to show why this is an important tool for archaeological fieldwork.  more » « less
Award ID(s):
1822107
PAR ID:
10112017
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in archaeological practice
Volume:
7
Issue:
2
ISSN:
2326-3768
Page Range / eLocation ID:
169-177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the significant growth in the use of non-metallic composite materials, the demands for new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot of attention recently for such applications. This is in addition to the biomedical imaging applications of microwave that are also being pursued actively. Among these efforts, in this paper, we propose a compact and cost-effective three-dimensional microwave imaging system based on a fast and robust holographic technique. For this purpose, we employ narrow-band microwave data, instead of wideband data used in previous three-dimensional cylindrical holographic imaging systems. Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve low cost and compact size, we employ off-the-shelf components to build a data acquisition system replacing the costly and bulky vector network analyzers. The simulation and experimental results demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of number of frequencies and size of the objects on the quality of reconstructed images. 
    more » « less
  2. We consider the problem of efficiently routing jobs that arrive into a central queue to a system of heterogeneous servers. Unlike homogeneous systems, a threshold policy, that routes jobs to the slow server(s) when the queue length exceeds a certain threshold, is known to be optimal for the one-fast-one-slow two-server system. But an optimal policy for the multi-server system is unknown and non-trivial to find. While Reinforcement Learning (RL) has been recognized to have great potential for learning policies in such cases, our problem has an exponentially large state space size, rendering standard RL inefficient. In this work, we propose ACHQ, an efficient policy gradient-based algorithm with a low dimensional soft threshold policy parameterization that leverages the underlying queueing structure. We provide stationary-point convergence guarantees for the general case and despite the low-dimensional parameterization prove that ACHQ converges to an approximate global optimum for the special case of two servers. Simulations demonstrate an improvement in expected response time of up to ∼30 over the greedy policy that routes to the fastest available server. 
    more » « less
  3. Cloud functions, exemplified by AWS Lambda and Azure Functions, are emerging as a new computing paradigm in the cloud. They provide elastic, serverless, and low-cost cloud computing, making them highly suitable for bursty and sparse workloads, which are quite common in practice. Thus, there is a new trend in designing data systems that leverage cloud functions. In this paper, we focus on vector databases, which have recently gained significant attention partly due to large language models. In particular, we investigate how to use cloud functions to build high-performance and cost-efficient vector databases. This presents significant challenges in terms of how to perform sharding, how to reduce communication overhead, and how to minimize cold-start times. In this paper, we introduce Vexless, the first vector database system optimized for cloud functions. We present three optimizations to address the challenges. To perform sharding, we propose a global coordinator (orchestrator) that assigns workloads to Cloud function instances based on their available hardware resources. To overcome communication overhead, we propose the use of stateful cloud functions, eliminating the need for costly communications during synchronization. To minimize cold-start overhead, we introduce a workload-aware Cloud function lifetime management strategy. Vexless has been implemented using Azure Functions. Experimental results demonstrate that Vexless can significantly reduce costs, especially on bursty and sparse workloads, compared to cloud VM instances, while achieving similar or higher query performance and accuracy. 
    more » « less
  4. Abstract Surface Light Scattering Spectroscopy (SLSS) can characterize the dynamics of an interface between two immiscible fluids by measuring the frequency spectrum of coherent light scattered from thermophysical fluctuations—‘ripplons’. In principle, and for many interfaces, SLSS can simultaneously measure surface tension and viscosity, with the potential for higher-order properties, such as surface elasticity and bending moments. Previously, this has been challenging. We describe and present some measurements from an instrument with improvements in optical design, specimen access, vibrational stability, signal-to-noise ratio, electronics, and data processing. Quantitative improvements include total internal reflection at the interface to enhance the typically available signal by a factor of order 40 and optical improvements that minimize adverse effects of sloshing induced by external vibrations. Information retrieval is based on a comprehensive surface response function, an instrument function, which compensates for real geometrical and optical limitations, and processing of almost real-time data to report results and their likely accuracy. Detailed models may be fit to the power spectrum in real time. The raw one-dimensional digitized data stream is archived to allow post-experiment processing. This paper reports a system design and implementation that offers substantial improvements in accuracy, simplicity, ease of use, and cost. The presented data are for systems in regions of low viscosity where the ripplons are underdamped, but the hardware described is more widely applicable. 
    more » « less
  5. NA (Ed.)
    Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments. 
    more » « less